Particle swarm optimization for deep learning of convolution neural network

Author(s):  
Mujahid H. Khalifa ◽  
Marwa Ammar ◽  
Wael Ouarda ◽  
Adel M. Alimi
Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5609 ◽  
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Rabin Chakrabortty ◽  
...  

This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.


2016 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Arie Rachmad Syulistyo ◽  
Dwi Marhaendro Jati Purnomo ◽  
Muhammad Febrian Rachmadi ◽  
Adi Wibowo

Neural network attracts plenty of researchers lately. Substantial number of renowned universities have developed neural network for various both academically and industrially applications. Neural network shows considerable performance on various purposes. Nevertheless, for complex applications, neural network’s accuracy significantly deteriorates. To tackle the aforementioned drawback, lot of researches had been undertaken on the improvement of the standard neural network. One of the most promising modifications on standard neural network for complex applications is deep learning method. In this paper, we proposed the utilization of Particle Swarm Optimization (PSO) in Convolutional Neural Networks (CNNs), which is one of the basic methods in deep learning. The use of PSO on the training process aims to optimize the results of the solution vectors on CNN in order to improve the recognition accuracy. The data used in this research is handwritten digit from MNIST. The experiments exhibited that the accuracy can be attained in 4 epoch is 95.08%. This result was better than the conventional CNN and DBN.  The execution time was also almost similar to the conventional CNN. Therefore, the proposed method was a promising method.  


Author(s):  
Shahab S ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Rabin Chakrabortty ◽  
...  

This study aims to evaluate a new approach in modeling gully erosion susceptibility based on deep learning neural network (DLNN) model, ensemble Particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN) and comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shiran watershed, Iran. For this purpose, 13 independent variables affecting gully erosion susceptibility in the study area, including altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from river, land use, soil, lithology, rainfall, , stream power index (SPI), topographic wetness index (TWI), were prepared. Also, 132 gully erosion locations were identified during field visits. Data for modeling were divided into two categories of training (70%) and testing (30%). Receiver operating characteristic (ROC) parameters including sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) and area under curve (AUC) were used to evaluate the performance of the models. The results showed that, the AUC values from ROC with considering testing datasets of PSO-DLNN is 0.89 and which is associated with superb accuracy. Rest of the models also associated with optimal accuracy and near about PSO-DLNN model; the AUC values from ROC of DLNN, SVM and ANN for testing datasets are 0.87, 0.85 and 0.84 respectively. The PSO algorithm has updated and optimized the weights of DLNN model, and as a result, the efficiency of this model in predicting gully erosion susceptibility has increased. Therefore, it can be concluded that the use of DLNN model and its ensemble with PSO algorithm can be used as a novel and practical method in predicting the susceptibility of gully erosion that helps planners and managers in managing and reducing the risk of this phenomenon.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Sign in / Sign up

Export Citation Format

Share Document