Poster: A Light Weight Service Discovery Mechanism in Robot Systems

Author(s):  
Yifan Gong ◽  
Lu Wang ◽  
Wei Liu ◽  
Jiangming Jin
Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


1996 ◽  
Vol 24 (2) ◽  
pp. 119-131
Author(s):  
F. Lux ◽  
H. Stumpf

Abstract Current demands by the consumer, the automobile industry, and the environment have determined the basis of this investigation. In the past, the requirements—ever faster, ever sportier—were accepted as decisive parameters for the development of our study. In the future, rational and safety-related tire characteristics as well as environmental consciousness will increase, whereas purely performance-related parameters will diminish in their importance. Through our light-weight tire project, we have paved the way for future tire generations. The first priority is the minimal use of material resources; this means a reduction of materials and energy in tire production by using advanced design and production methods without sacrificing performance standards. This benefits the consumer—the final judge of all of our activities—by considerably reducing the rolling resistance, leading to lower fuel consumption. Further design targets include the improvement of rolling behavior and increased comfort by reducing tire weight, and therefore a reduction in unsprung masses on the vehicle.


Sign in / Sign up

Export Citation Format

Share Document