Metamaterial Based MIMO Antenna Design for 5G Communication Systems

Author(s):  
Canan Inan ◽  
Umut Kose ◽  
Aktul Kavas
Author(s):  
Achilles D. Boursianis ◽  
Sotirios K. Goudos ◽  
Traianos V. Yioultsis ◽  
Katherine Siakavara ◽  
Paolo Rocca

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1083
Author(s):  
Saifur Rahman ◽  
Xin-cheng Ren ◽  
Ahsan Altaf ◽  
Muhammad Irfan ◽  
Mujeeb Abdullah ◽  
...  

In this work, a new Multiple Input Multiple Output (MIMO) antenna system with a novel shape inspired by nature is proposed for Fifth-Generation (5G) communication systems. The antenna is designed on a Rogers 5880. The dielectric constant of the substrate is 2.2, and the loss tangent is assumed to be 0.0009. The gain of the system for the desired bandwidth is nearly 8 dB. The simulated and the measured efficiency of the proposed system is 95% and 80%, respectively. To demonstrate the capability of the system as a potential candidate for future 5G communication devices, MIMO key performance parameters such as the Envelope Correlation Coefficient (ECC) and Diversity Gain (DG) are computed. It is found that the proposed system has low ECC, constant DG, and high efficiency for the desired bandwidth.


Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 29-37
Author(s):  
Muhammad Ikram

The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output (MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed prototype. With this configuration, multiple directive beams pointing in different directions have been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication. A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone.


In this the proposed patch antenna operates at 32 GHz which is among the projected 5G communication frequencies and has a novel geometry with rhombus-shaped slots. The first design in this work is a inset fed used conventionally in patch antenna. It has a quarter wavelength impedance matching line. The dimensions are determined according to the usual design considerations. Low return loss and high bandwidth requirements motivates us to modify the antenna design. Therefore, we add rhombus – shaped slots on the patch which leads to an additional increase in the system bandwidth as much as 52 MHz and a reduction in the return loss level up to 11.241 dB. The proposed patch antenna design is conjectured to be a suitable candidate to address the requirements of 5G communication systems. The operating frequency of the proposed antenna can be tuned by changing the geometrical dimensions from microwave to the THz region.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 43190-43204 ◽  
Author(s):  
Mahsa Keshavarz Hedayati ◽  
Abdolali Abdipour ◽  
Reza Sarraf Shirazi ◽  
Max J. Ammann ◽  
Matthias John ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document