MIMO Antenna Design for Future 5G Wireless Communication Systems

Author(s):  
M. Aziz ul Haq ◽  
M. Arif Khan ◽  
Md Rafiqul Islam
ETRI Journal ◽  
2009 ◽  
Vol 31 (3) ◽  
pp. 271-281 ◽  
Author(s):  
Paitoon Rakluea ◽  
Noppin Anantrasirichai ◽  
Kanok Janchitrapongvej ◽  
Toshio Wakabayashi

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2141
Author(s):  
Junghoon Cha ◽  
Choon-Seong Leem ◽  
Ikhwan Kim ◽  
Hakyoung Lee ◽  
Hojun Lee

In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for application in 5G wireless communication systems. The proposed antenna comprised two vertically polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1 and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical (y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions, respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband owing to the optimal distance between the dipole antennas. The observations in this experiment confirmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz), n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a wide impedance bandwidth (dB magnitude of ) of 101% in the 2.3–7 GHz frequency range, high isolation (dB magnitude of ), low envelope coefficient correlation (ECC), gain of over 5 dB, and average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G wireless communication systems.


Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 29-37
Author(s):  
Muhammad Ikram

The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output (MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed prototype. With this configuration, multiple directive beams pointing in different directions have been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication. A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone.


Author(s):  
Macho Revelino Siahaan ◽  
Levi Olivia Nur ◽  
Radial Anwar

One of the challenges of antenna development for wireless communication systems is to create an antenna that casn be operated in wide frequency so that a single antenna can be used in various wireless communication technologies. This paper discussed the wideband antenna with Telkom University Logo-shaped patch, using Fr-4 (?r = 4.3) substrate with 1.6 mm thickness. The antenna can be operated in the frequency range of 760 MHz – 13.75 GHz. The gain performance at the working frequency is still above 0 dBi. Hence, the antenna design to work properly for wireless communication systems which require relatively long distances. The Defected Ground Substrate (DGS) method is applied to achieve that bandwidth. Measurement shows the logo-shaped patch antenna achieves 12.994 GHz bandwidth with 1.33 VSWR and gain 2.85 at 921.5 MHz frequency.


Sign in / Sign up

Export Citation Format

Share Document