scholarly journals On Digital Twin Condition Monitoring Approach for Drivetrains in Marine Applications

Author(s):  
Sigrid S. Johansen ◽  
Amir R. Nejad

Abstract A digital twin is a virtual representation of a system containing all information available on site. This paper presents condition monitoring of drivetrains in marine power transmission systems through digital twin approach. A literature review regarding current operations concerning maintenance approaches in todays practices are covered. State-of-the-art fault detection in drivetrains is discussed, founded in condition monitoring, data-based schemes and model-based approaches, and the digital twin approach is introduced. It is debated that a model-based approach utilizing a digital twin could be recommended for fault detection of drivetrains. By employing a digital twin, fault detection would be extended to relatively highly diagnostic and predictive maintenance programme, and operation and maintenance costs could be reduced. A holistic model system approach is considered, and methodologies of digital twin design are covered. A physical-based model rather than a data based model is considered, however there are no clear answer whereas which type is beneficial. That case is mostly answered by the amount of data available. Designing the model introduces several pitfalls depending on the relevant system, and the advantages, disadvantages and appropriate applications are discussed. For a drivetrain it is found that multi-body simulation is advised for the creation of a digital twin model. A digital twin of a simple drivetrain test rig is made, and different modelling approaches were implemented to investigate levels of accuracy. Reference values were derived empirically by attaching sensors to the drivetrain during operation in the test rig. Modelling with a low fidelity model showed high accuracy, however it would lack several modules required for it to be called a digital twin. The higher fidelity model showed that finding the stiffness parameter proves challenging, due to high stiffness sensitivity as the experimental modelling demonstrates. Two industries that could have significant benefits from implementing digital twins are discussed; the offshore wind industry and shipping. Both have valuable assets, with reliability sensitive systems and high costs of downtime and maintenance. Regarding the shipping industry an industrial case study is done. Area of extra focus is operations of Ro-Ro (roll on-roll off) vessels. The vessels in the case study are managed by Wilhelmsen Ship Management and a discussion of the implementation of digital twins in this sector is comprised in this article.

2020 ◽  
Vol 26 (7) ◽  
pp. 1448-1468
Author(s):  
S.N. Yashin ◽  
Yu.V. Trifonov ◽  
E.V. Koshelev

Subject. This article deals with the issues related to the use of digital twins in order to manage innovation and industrial clusters and the liaison between them. Objectives. The article aims to develop a digital twin model of inter-cluster cooperation within a Federal district of Russia. The Volga (Privolzhsky) Federal District is considered a case study. Methods. For the study, we used a multiple non-linear regression method and a fast simulated annealing (FSA). Results. The article offers and describes a designed digital twin model of inter-cluster cooperation mechanism. Conclusions and Relevance. When reallocating investment and human resources within one federal district, the interests of the population of innovation and industrial clusters should be taken into account, as only just an increase in fixed investment does not always lead to the growth of the region's population. The use of the digital twin model of inter-cluster cooperation mechanism will help avoid premature unreasonable management decisions of the public-policy level regarding the further development of innovation-industrial clusters.


2020 ◽  
Vol 12 (6) ◽  
pp. 2307 ◽  
Author(s):  
Fabian Dembski ◽  
Uwe Wössner ◽  
Mike Letzgus ◽  
Michael Ruddat ◽  
Claudia Yamu

Cities are complex systems connected to economic, ecological, and demographic conditions and change. They are also characterized by diverging perceptions and interests of citizens and stakeholders. Thus, in the arena of urban planning, we are in need of approaches that are able to cope not only with urban complexity but also allow for participatory and collaborative processes to empower citizens. This to create democratic cities. Connected to the field of smart cities and citizens, we present in this paper, the prototype of an urban digital twin for the 30,000-people town of Herrenberg in Germany. Urban digital twins are sophisticated data models allowing for collaborative processes. The herein presented prototype comprises (1) a 3D model of the built environment, (2) a street network model using the theory and method of space syntax, (3) an urban mobility simulation, (4) a wind flow simulation, and (5) a number of empirical quantitative and qualitative data using volunteered geographic information (VGI). In addition, the urban digital twin was implemented in a visualization platform for virtual reality and was presented to the general public during diverse public participatory processes, as well as in the framework of the “Morgenstadt Werkstatt” (Tomorrow’s Cities Workshop). The results of a survey indicated that this method and technology could significantly aid in participatory and collaborative processes. Further understanding of how urban digital twins support urban planners, urban designers, and the general public as a collaboration and communication tool and for decision support allows us to be more intentional when creating smart cities and sustainable cities with the help of digital twins. We conclude the paper with a discussion of the presented results and further research directions.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8194
Author(s):  
Mehdi Kherbache ◽  
Moufida Maimour ◽  
Eric Rondeau

The Industrial Internet of Things (IIoT) is known to be a complex system because of its severe constraints as it controls critical applications. It is difficult to manage such networks and keep control of all the variables impacting their operation during their whole lifecycle. Meanwhile, Digital Twinning technology has been increasingly used to optimize the performances of industrial systems and has been ranked as one of the top ten most promising technological trends in the next decade. Many Digital Twins of industrial systems exist nowadays but only few are destined to networks. In this paper, we propose a holistic digital twinning architecture for the IIoT where the network is integrated along with the other industrial components of the system. To do so, the concept of Network Digital Twin is introduced. The main motivation is to permit a closed-loop network management across the whole network lifecycle, from the design to the service phase. Our architecture leverages the Software Defined Networking (SDN) paradigm as an expression of network softwarization. Mainly, the SDN controller allows for setting up the connection between each Digital Twin of the industrial system and its physical counterpart. We validate the feasibility of the proposed architecture in the process of choosing the most suitable communication mechanism that satisfies the real-time requirements of a Flexible Production System.


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 386
Author(s):  
Şahan Yoruç Selçuk ◽  
Perin Ünal ◽  
Özlem Albayrak ◽  
Moez Jomâa

Digital twins, virtual representations of real-life physical objects or processes, are becoming widely used in many different industrial sectors. One of the main uses of digital twins is predictive maintenance, and these technologies are being adapted to various new applications and datatypes in many industrial processes. The aim of this study was to propose a methodology to generate synthetic vibration data using a digital twin model and a predictive maintenance workflow, consisting of preprocessing, feature engineering, and classification model training, to classify faulty and healthy vibration data for state estimation. To assess the success of the proposed workflow, the mentioned steps were applied to a publicly available vibration dataset and the synthetic data from the digital twin, using five different state-of-the-art classification algorithms. For several of the classification algorithms, the accuracy result for the classification of healthy and faulty data achieved on the public dataset reached approximately 86%, and on the synthetic data, approximately 98%. These results showed the great potential for the proposed methodology, and future work in the area.


2021 ◽  
Author(s):  
Sabri Deniz ◽  
Ulf Christian Müller ◽  
Ivo Steiner ◽  
Thomas Sergi

Abstract The Covid-19 pandemic has changed the university education, with most teaching moved off campus and students learning online or remote at home, but a cornerstone of undergraduate engineering education has been a big challenge, namely the laboratory classes. As the engineering and education communities continue to adapt to the realities of a global pandemic, it is important to recognize the importance of the laboratory-based courses. In order to address to this situation, an ambitious approach is taken to recreate the laboratory experience entirely online with the help of the digital twins of the fluid mechanics, thermodynamics, and turbomachinery laboratory experiments. Laboratory based undergraduate courses such as EFPLAB1, EFPLAB2 (Energy; Fluid and Process Laboratory 1 & 2) and EFPENG (Energy; Fluid and Process Engineering) are important parts of the “mechanical engineering” and “energy systems engineering” curricula of the Lucerne University of Applied Sciences (HSLU) in Switzerland. Each course mentioned above include six different laboratory experiments about fluid mechanics, thermodynamics, turbomachinery, energy efficiency, and energy systems, including mass- and energy flow balances in energy systems. During the Covid-19 pandemic, it was necessary to adapt to the new environment of remote learning courses and modify the laboratory experiments so that they can be carried out online. The approach was developing digital twins of each laboratory experiment with web applications and providing an environment together with supporting videos and interactive problems so that the laboratory experiments can be carried out remotely. A digital twin is a digital representation of a physical system, e.g., the test rig. It may contain a collection of various digital models with related physical equations and solutions, information related to the operation of the test rig, including 2D or 3D models, process models, sensor data records, and documentation. Ideally, all quantities and attributes that could be measured or observed from the real experiment should be accessible from its digital twin. The digital twin not only reproduces the experimental setup in the laboratory but also helps to improve the knowledge related to the theory and concepts of the laboratory experiments. One major advantage of the digital twin is that the number and range of the parameters, which can be manipulated or varied, is larger in comparison to the actual testing in the laboratory. This paper explains the development of the digital twins (web applications) of the laboratory experiments and provides information about the selected experiments such as potential vortex, linear momentum equation, diffuser flow, radial compressor, fuel cell, and pump test rig with the measurement of pump characteristics. A remote or distance learning has many hurdles, one of the largest being how to teach hands-on laboratory courses outside of an actual laboratory. The experience at the Lucerne University of Applied Sciences showed that teaching online labs using the digital twins of the laboratory experiments can work and the students can take part in remote laboratories that meet the learning outcomes and objectives as well as engage in scientific inquiry from a distance.


Sign in / Sign up

Export Citation Format

Share Document