Application of a Data Communication Infrastructure for the Voltage Magnitude Control in Transmission Power Systems

Author(s):  
Enza R. S. de Ferreira ◽  
Rafael M. Barros ◽  
Thiago A. R. da Silva ◽  
Ricardo A. L. de Rabelo ◽  
Valdemir R. Junior ◽  
...  
2014 ◽  
Vol 513-517 ◽  
pp. 772-776
Author(s):  
Chen Wang ◽  
Hong Ai ◽  
Lie Wu ◽  
Yun Yang

The smart grid that the next-generation electric power system is studied intensively as a promising solution for energy crisis. One important feature of the smart grid is the integration of high-speed, reliable and secure data communication networks to manage the complex power systems effectively and intelligently. The goal of smart grid is to achieve the security of operation, economic efficient and environmental friendly. To achieve this goal, we proposed a fine-grained access control model for smart grid. In order to improve the security of smart grid, an access-trust-degree algorithm is proposed to evaluate the reliability of the user who want to access to the smart grid.


2022 ◽  
pp. 380-407
Author(s):  
Abdelmadjid Recioui ◽  
Youcef Grainat

The communication infrastructure constitutes the key element in smart grids. There have been great advances to enhance the way data is communicated among the different smart grid applications. The aim of this chapter is to present the data communication part of the smart grid with some pioneering developments in this topic. A succinct review of the state of art projects to improve the communication link is presented. An illustrative simulation using LABVIEW is included with a proposed idea of introducing some newly technologies involved in the current and future generations of wireless communication systems.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1442 ◽  
Author(s):  
Chun-Hung Liu ◽  
Jyh-Cherng Gu

Distributed energy resources (DERs) are being widely interconnected to electrical power grids. The dispersed and intermittent generational mixes bring technical and economic challenges to the power systems in terms of stability, reliability, and interoperability. In practice, most of the communication technologies in DER are provided by proprietary communication protocols, which are not designed for the prevention of cyber security over a wide area network, and methodology of DER integration is not unified. This has made it technically difficult for power utilities and aggregators to monitor and control the DER systems after they are interconnected with the electrical grids. Moreover, peer to peer communication between DER systems as well as local intelligent computation is required to reduce decision latency and enhance the stability of the smart grid or microgrid. In this paper, the first, novel architecture of IEC 61850 XMPP (extensible messaging and presence protocol) of the edge computing gateway, involving advanced concepts and technologies, was developed and completely studied to counter the abovementioned challenges. The results show that the proposed architecture can enhance the DER system’s effective integration, security in data communication and transparency for interoperability. The novel and advanced concepts involve first modeling the topology of the photovoltaic (PV) station to IEC 61850 information models according to the IEC 61850-7-4 logical nodes and the DER-specific logical nodes defined in IEC 61850-7-420. This guarantees the interoperability between DER and DER, DER and utility and DER and the energy service operator. The second step was to map the information models to IEC 61850-8-2 XMPP for the specific communication protocol in DER applications. XMPP protocol, a publish/subscribe communication mechanism, is recommended in DER applications because of its characteristics of cybersecurity and authenticated encryption. After that we enabled the edge computing capability for data processing and the analytics of the DER side for time-critical missions. The aggregated data was then sent to the control center in the cloud. By applying the edge computing architecture, the system reduced decision latency, improved data privacy and enhanced security. The goal of this paper was to introduce the practical methodologies of these novel concepts to academics and industrial engineers.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2648 ◽  
Author(s):  
Antonio Delle Femine ◽  
Daniele Gallo ◽  
Carmine Landi ◽  
Mario Luiso

The widespread diffusion of Phasor Measurement Units (PMUs) is a becoming a need for the development of the “smartness” of power systems. However, PMU with accuracy compliant to the standard Institute of Electrical and Electronics Engineers (IEEE) C37.118.1-2011 and its amendment IEEE Std C37.118.1a-2014 have typically costs that constitute a brake for their diffusion. Therefore, in this paper, the design of a low-cost implementation of a PMU is presented. The low cost approach is followed in the design of all the building blocks of the PMU. A key feature of the presented approach is that the data acquisition, data processing and data communication are integrated in a single low cost microcontroller. The synchronization is obtained using a simple external Global Positioning System receiver, which does not provide a disciplined clock. The synchronization of sampling frequency, and thus of the measurement, to the Universal Time Coordinated, is obtained by means of a suitable signal processing technique. For this implementation, the Interpolated Discrete Fourier Transform has been used as the synchrophasor estimation algorithm. A thorough metrological characterization of the realized prototype in different test conditions proposed by the standards, using a high performance PMU calibrator, is also shown.


Author(s):  
Mohammed Abdallatif ◽  
Markus Kuch ◽  
Sebastian Schramm ◽  
Jurgen Gotze ◽  
Christian Rehtanz

Sign in / Sign up

Export Citation Format

Share Document