Cooperative Search Algorithm for UAVs Based on Multi-ant Colony

Author(s):  
Wei. Yue ◽  
Wenbin. Tang ◽  
Liyuan. Wang ◽  
Yun. Xi ◽  
Zhongchang. Liu ◽  
...  
2015 ◽  
Vol 68 (6) ◽  
pp. 1075-1087 ◽  
Author(s):  
Xiang Cao ◽  
Daqi Zhu

Ocean currents impose a negative effect on Autonomous Underwater Vehicle (AUV) underwater target searches, which lengthens the search paths and consumes more energy and team effort. To solve this problem, an integrated algorithm is proposed to realise multi-AUV cooperative search in dynamic underwater environments with ocean currents. The proposed integrated algorithm combines the Biological Inspired Neurodynamics Model (BINM) and Velocity Synthesis (VS) method. Firstly, the BINM guides a team of AUVs to achieve target search in underwater environments; BINM search requires no specimen learning information and is thus easier to apply to practice, but the search path is longer because of the influence of ocean current. Next the VS algorithm offsets the effect of ocean current, and it is applied to optimise the search path for each AUV. Lastly, to demonstrate the effectiveness of the proposed integrated approach, simulation results are given in this paper. It is proved that this integrated algorithm can plan shorter search paths and thus the energy consumption is lower compared with BINM.


2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2675 ◽  
Author(s):  
Yang Zhang ◽  
Huihui Zhao ◽  
Yuming Cao ◽  
Qinhuo Liu ◽  
Zhanfeng Shen ◽  
...  

The development of remote sensing and intelligent algorithms create an opportunity to include ad hoc technology in the heating route design area. In this paper, classification maps and heating route planning regulations are introduced to create the fitness function. Modifications of ant colony optimization and the cuckoo search algorithm, as well as a hybridization of the two algorithms, are proposed to solve the specific Zhuozhou–Fangshan heating route design. Compared to the fitness function value of the manual route (234.300), the best route selected by modified ant colony optimization (ACO) was 232.343, and the elapsed time for one solution was approximately 1.93 ms. Meanwhile, the best route selected by modified Cuckoo Search (CS) was 244.247, and the elapsed time for one solution was approximately 0.794 ms. The modified ant colony optimization algorithm can find the route with smaller fitness function value, while the modified cuckoo search algorithm can find the route overlapped to the manual selected route better. The modified cuckoo search algorithm runs more quickly but easily sticks into the premature convergence. Additionally, the best route selected by the hybrid ant colony and cuckoo search algorithm is the same as the modified ant colony optimization algorithm (232.343), but with higher efficiency and better stability.


2020 ◽  
Vol 11 (2) ◽  
pp. 192-207 ◽  
Author(s):  
Patrick Kenekayoro ◽  
Promise Mebine ◽  
Bodouowei Godswill Zipamone

The student project allocation problem is a well-known constraint satisfaction problem that involves assigning students to projects or supervisors based on a number of criteria. This study investigates the use of population-based strategies inspired from physical phenomena (gravitational search algorithm), evolutionary strategies (genetic algorithm), and swarm intelligence (ant colony optimization) to solve the Student Project Allocation problem for a case study from a real university. A population of solutions to the Student Project Allocation problem is represented as lists of integers, and the individuals in the population share information through population-based heuristics to find more optimal solutions. All three techniques produced satisfactory results and the adapted gravitational search algorithm for discrete variables will be useful for other constraint satisfaction problems. However, the ant colony optimization algorithm outperformed the genetic and gravitational search algorithms for finding optimal solutions to the student project allocation problem in this study.


2014 ◽  
Vol 575 ◽  
pp. 820-824
Author(s):  
Bin Zhang ◽  
Jia Jin Le ◽  
Mei Wang

MapReduce is a highly efficient distributed and parallel computing framework, allowing users to readily manage large clusters in parallel computing. For Big data search problem in the distributed computing environment based on MapReduce architecture, in this paper we propose an Ant colony parallel search algorithm (ACPSMR) for Big data. It take advantage of the group intelligence of ant colony algorithm for global parallel search heuristic scheduling capabilities to solve problem of multi-task parallel batch scheduling with low efficiency in the MapReduce. And we extended HDFS design in MapReduce architecture, which make it to achieve effective integration with MapReduce. Then the algorithm can make the best of the scalability, high parallelism of MapReduce. The simulation experiment result shows that, the new algorithm can take advantages of cloud computing to get good efficiency when mining Big data.


Sign in / Sign up

Export Citation Format

Share Document