High pressure gas injection for suppression of runaway electrons in disruptions

Author(s):  
L.E. Zakharov ◽  
S. Putvinski ◽  
A.S. Kukushkin ◽  
R.A. Pitts ◽  
M. Sugihara ◽  
...  
2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2571 ◽  
Author(s):  
Jingrui Li ◽  
Jietuo Wang ◽  
Teng Liu ◽  
Jingjin Dong ◽  
Bo Liu ◽  
...  

High-pressure direct-injection (HPDI) natural gas marine engines are widely used because of their higher thermal efficiency and lower emissions. The effects of different injection rate shapes on the combustion and emission characteristics were studied to explore the appropriate gas injection rate shapes for a low-speed HPDI natural gas marine engine. A single-cylinder model was established and the CFD model was validated against experimental data from the literature; then, the combustion and emission characteristics of five different injection rate shapes were analyzed. The results showed that the peak values of in-cylinder pressure and heat release rate profiles of the triangle shape were highest due to the highest maximum injection rate, which occurred in a phase close to the top dead center. The shorter combustion duration of the triangle shape led to higher indicated mean effective pressure (IMEP) and NOx emissions compared with other shapes. The higher initial injection rates of the rectangle and slope shapes had a negative effect on the ignition delay periods of pilot fuel, which resulted in lower in-cylinder temperature and NOx emissions. However, due to the lower in-cylinder temperature, the engine power output was also lower. Otherwise, soot, unburned hydrocarbon (UHC), and CO emissions and indicated specific fuel consumption (ISFC) increased for both rectangle and slope shapes. The trapezoid and wedge shapes achieved a good balance between fuel consumption and emissions.


Author(s):  
C. D. (Charlton) Breon ◽  
D. R. (Daniel) Veth

A turbine-compressor train consisting of a General Electric MS5001 Model R single-shaft gas turbine, a Philadelphia Gear speed-increasing gearbox, and a Dresser-Clark centrifugal compressor was uprated for 30% increased gas throughput. This train is one of thirteen units operated by ARCO Alaska, Inc. for high pressure natural gas injection service in Alaska’s Prudhoe Bay Oil Field. The uprate included an in-place conversion of the gas turbine from a Model R to a Model P configuration. This paper describes the engineering, planning, and implementation activities that led up to the successful uprate of this train with only a 24 day equipment outage.


High Voltage ◽  
2016 ◽  
Vol 1 (4) ◽  
pp. 181-191 ◽  
Author(s):  
Victor F. Tarasenko ◽  
Mikhail I. Lomaev ◽  
Dmitry V. Beloplotov ◽  
Dmitry A. Sorokin

Sign in / Sign up

Export Citation Format

Share Document