scholarly journals Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

2019 ◽  
Vol 51 (3) ◽  
pp. 908-914
Author(s):  
Xiaoli Ren ◽  
Jia Zhai ◽  
Jihong Wang ◽  
Ge Ren
1983 ◽  
Vol 23 (02) ◽  
pp. 339-348 ◽  
Author(s):  
T. Ahmed ◽  
D. Menzie ◽  
H. Crichlow

Summary Miscible-displacement processes have generally been recognized by the petroleum industry as an important enhanced oil recovery (EOR) method. Nitrogen flooding has become an attractive method for economical EOR. Since no previous studies have been undertaken to observe miscibility conditions directly during their development in an oil reservoir, a research program was initiated to investigate experimentally the mechanism by which miscibility could be achieved in a reservoir model undergoing high-pressure nitrogen injection. Several experiments were conducted in a low-permeability, consolidated sandpacked stainless-steel tube 125 ft long and 0.435 in. in diameter. The apparatus was designed to allow sampling at selected locations along the core tube enabling researchers to investigate fluid behavior during the process. A more-detailed representation of the nitrogen displacement process is formulated and the graphical chromatographic results are presented to illustrate the nitrogen miscibility in consolidated cores. Introduction Previous researchers have investigated, experimentally and theoretically, the problem of predicting the effects of dry-gas injection into a reservoir. Most earlier experimental studies were concerned primarily with the effects of changing pressure, temperature, and gas solubility on oil recovery during gas injection. Vogel and Yarborough conducted a number of laboratory tests on several different reservoir fluids to determine the effect of nitrogen contact by varying the amounts of nitrogen. They reported that the solution-gas gravity, oil density, and oil viscosity increased with continued contact by nitrogen. No previous studies have been conducted to observe miscibility conditions directly during their development in an oil reservoir. This experimental work was initiated to investigatecompositional changes taking place during displacing of crude oil by continuous high-pressure nitrogen injection,change in properties of the liquid and vapor phases during the nitrogen injection,miscible pressures for nitrogen displacement, anddistance from the injection point at which miscibility would be achieved. Experimental Apparatus and Materials Apparatus The experiment was designed to studyvaporization of oil by high-pressure nitrogen injection,mechanisms of nitrogen multiple contact miscibility displacement, andcompositional changes that take place between nitrogen and in-situ oil during the test. Fig. 1 shows a schematic of the equipment used to perform the experimental study. For the purpose of description, the laboratory apparatus may be divided into three parts: a laboratory oil reservoir model, an injection system, and a production and analytical system. SPEJ P. 339^


Energy ◽  
2020 ◽  
pp. 119695
Author(s):  
Yan Lei ◽  
Yong Li ◽  
Tao Qiu ◽  
Yunqiang Li ◽  
Yupeng Wang ◽  
...  

Author(s):  
L.E. Zakharov ◽  
S. Putvinski ◽  
A.S. Kukushkin ◽  
R.A. Pitts ◽  
M. Sugihara ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


Author(s):  
T. Jiang ◽  
B. Li ◽  
W. Li ◽  
M. Wang ◽  
Y. Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document