Novel DVCCs based voltage-mode first-order all-pass sections

Author(s):  
Vijay Kumar Dixit ◽  
Rajeev Gupta ◽  
Kirat Pal
Keyword(s):  
2018 ◽  
Vol 27 (10) ◽  
pp. 1850150 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents first-order voltage-mode filters using a single current conveyor with an additional X-stage, and passive elements. The new circuits have multifunction capability, and also realize low-shelf, high-shelf and band-shelf functions. The study is carried out on the effects of non-idealities, parasitic elements, and loading on the performance of proposed circuits. Active and passive sensitivities are also analyzed. The active element, extra-X current conveyor used for designing new circuits is simpler than most of the one active element and two passive elements’ based circuits. Detailed comparisons are carried out with relevant available works, and the new circuits are found to be more compact and exhibit higher frequency performances. The simulation results using 0.25[Formula: see text][Formula: see text]m CMOS parameters with [Formula: see text]1.25[Formula: see text]V power-supply are shown to verify the proposed circuits. The proposed circuits are also verified through simulations. Experimental support is given using AD-844 ICs to strengthen the validity of the proposed circuits.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250065 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
JITENDRA MOHAN ◽  
DURG SINGH CHAUHAN

This paper presents two new first-order voltage-mode (VM) cascadable all-pass (AP) sections, employing two differential voltage current conveyors (DVCCs) and three grounded passive components. Both circuits possess high input and low output impedance, which makes them easily cascadable. Non-ideality aspects and parasitic effects are also studied. As an application, a quadrature oscillator is designed using the proposed circuit. The proposed circuits are verified through PSPICE simulations using 0.5 μm CMOS parameters.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450077 ◽  
Author(s):  
JITENDRA MOHAN ◽  
SUDHANSHU MAHESHWARI

To extend the existing knowledge on first-order voltage-mode all-pass filters, this paper presents two novel first-order voltage-mode all-pass sections, each employing single fully differential second-generation current conveyor (FDCCII) being used as the newly obtained fully differential voltage conveyor (FDVC), a resistor and a grounded capacitor. Both the proposed circuits possess high-input and low-output impedance feature, which makes the proposed circuits ideal for voltage-mode systems. Non-ideal study along with simulation results is given for validation.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.


Sign in / Sign up

Export Citation Format

Share Document