Some Analog Filters of Reduced Complexity with Shelving and Multifunctional Characteristics

2018 ◽  
Vol 27 (10) ◽  
pp. 1850150 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents first-order voltage-mode filters using a single current conveyor with an additional X-stage, and passive elements. The new circuits have multifunction capability, and also realize low-shelf, high-shelf and band-shelf functions. The study is carried out on the effects of non-idealities, parasitic elements, and loading on the performance of proposed circuits. Active and passive sensitivities are also analyzed. The active element, extra-X current conveyor used for designing new circuits is simpler than most of the one active element and two passive elements’ based circuits. Detailed comparisons are carried out with relevant available works, and the new circuits are found to be more compact and exhibit higher frequency performances. The simulation results using 0.25[Formula: see text][Formula: see text]m CMOS parameters with [Formula: see text]1.25[Formula: see text]V power-supply are shown to verify the proposed circuits. The proposed circuits are also verified through simulations. Experimental support is given using AD-844 ICs to strengthen the validity of the proposed circuits.

2014 ◽  
Vol 23 (06) ◽  
pp. 1450077 ◽  
Author(s):  
JITENDRA MOHAN ◽  
SUDHANSHU MAHESHWARI

To extend the existing knowledge on first-order voltage-mode all-pass filters, this paper presents two novel first-order voltage-mode all-pass sections, each employing single fully differential second-generation current conveyor (FDCCII) being used as the newly obtained fully differential voltage conveyor (FDVC), a resistor and a grounded capacitor. Both the proposed circuits possess high-input and low-output impedance feature, which makes the proposed circuits ideal for voltage-mode systems. Non-ideal study along with simulation results is given for validation.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Parveen Beg

This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII). The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.


Author(s):  
Jiun-Wei Horng ◽  
Chun-Yang Tsai ◽  
Te-Chi Chen ◽  
Chang-Ming Wu

Background: Three high input impedances voltage-mode first-order filters are presented. Methods: The first proposed circuit uses one multi-output second-generation current conveyor, two resistors and one grounded capacitor. The second proposed circuit uses two second-generation current conveyors, three resistors and one grounded capacitor. The third proposed circuit uses one multi-output second-generation current conveyor, one resistor and two grounded capacitors. Results: First-order lowpass and allpass filters can be simultaneously obtained in the first proposed circuit. First-order lowpass, highpass and allpass filters can be simultaneously obtained in the second proposed circuit. The third proposed circuit can realize first-order allpass filter. Conclusion: All the proposed circuits have the advantages of high input impedances and using only grounded capacitors.


2004 ◽  
Vol 27 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Iqbal A. Khan

Two new configurations realizing canonical first-order current-mode all-pass sections (APSs) using a single third generation current conveyor (CCIII) are given. Using each configuration, two types of first-order all-pass filters can be derived giving rise to four distinct circuits for APS, three of which are novel. Each APS employs only a single CCIII and a minimum of passive components: one resistor and one capacitor. The circuits are suited for MOS implementation. The SPICE simulation results for frequency response as well as transient response are incorporated to verify the theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Sudhanshu Maheshwari

This study relates to the review of an important analog electronic function in form of all-pass filter’s realization using assorted current conveyor types and their relative performances, which resulted in a novel solution based on a new proposed active element. The study encompasses notable proposals during last the decade or more, and provides a platform for a broader future survey on the topic for enhancing the knowledge penetration amongst the researchers in the specified field. A new active element named EXCCII (Extra-X second generation current conveyor) with buffered output is found in the study along with its use in a new first-order all-pass section, with possible realization using commercially available IC (AD-844) and results.


Sign in / Sign up

Export Citation Format

Share Document