Voltage-mode first-order universal filter realizations based on subtractors

Author(s):  
Ahmet Abaci ◽  
Erkan Yuce
Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050149 ◽  
Author(s):  
Bhartendu Chaturvedi ◽  
Jitendra Mohan ◽  
Atul Kumar ◽  
Kirat Pal

This paper deals with the realization of current-mode first-order universal filter based on multiple output second generation current conveyor (MO-CCII). Two MO-CCIIs, one resistor and one capacitor are used in the circuit realization. The proposed work includes additional features such as ease of cascadability, easily implementable in modern integrated circuit technology and no requirement of passive components matching condition. The additional beauty of the proposed filter structure is that all three responses can also be realized by interchanging the positions of passive components as well. Moreover, a possible transformation of the proposed current-mode type universal filter into a voltage-mode type universal filter using network transpose method is also explored. The possibility of mode transformation further expands the scope of proposed idea. The theoretical aspects are verified using cadence VIRTUOSO simulation results.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


Author(s):  
Rajeshwari Pandey ◽  
Neeta Pandey ◽  
Sajal Kumar Paul ◽  
Ajay Singh ◽  
Balamurali Sriram ◽  
...  

2018 ◽  
Vol 27 (10) ◽  
pp. 1850150 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents first-order voltage-mode filters using a single current conveyor with an additional X-stage, and passive elements. The new circuits have multifunction capability, and also realize low-shelf, high-shelf and band-shelf functions. The study is carried out on the effects of non-idealities, parasitic elements, and loading on the performance of proposed circuits. Active and passive sensitivities are also analyzed. The active element, extra-X current conveyor used for designing new circuits is simpler than most of the one active element and two passive elements’ based circuits. Detailed comparisons are carried out with relevant available works, and the new circuits are found to be more compact and exhibit higher frequency performances. The simulation results using 0.25[Formula: see text][Formula: see text]m CMOS parameters with [Formula: see text]1.25[Formula: see text]V power-supply are shown to verify the proposed circuits. The proposed circuits are also verified through simulations. Experimental support is given using AD-844 ICs to strengthen the validity of the proposed circuits.


Sign in / Sign up

Export Citation Format

Share Document