Enhancement of CPW-fed inverted L-shaped UWB antenna performance characteristics using partial substrate removal technique

Author(s):  
S.S. Mohan Reddy ◽  
P Mallikarjuna Rao ◽  
B T P Madhav

This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


Author(s):  
Charles W. Holzwarth ◽  
Jason S. Orcutt ◽  
Hanqing Li ◽  
Milos A. Popovic ◽  
Vladimir Stojanovic ◽  
...  

the objective of this paper is to design and analysis of the Ultra wide Band Micro strip Patch Antenna which covers the Ultra Wide Band 2.9 to 21.5 GHz. To get an optimum results and performance of the projected self complementary UWB antenna depends on the study of dissimilar methods for optimizing the different parameters of the radiating patch along with notch dimensions. The proposed self complementary UWB antenna with overlapped rectangular shape patch and Defected DGS is designed with C-Slot in the radiating patch element and ground with L shaped slot which covers the whole UWB frequency band apart from band notches WLAN (5.125-5.825 GHz) ,Satellite Communications (7.9-8.5 GHz) and Ku band 13.4-14.5GHz.The UWB antenna performance is improved in terms of the Bandwidth by including Rectangular shaped slit between feeding element and the radiating patch. Now a days it is important to avoid existing wireless communication networks from the design of UWB antenna. The self complementary UWB antenna impedance bandwidth from 2.9 GHz to 21.5 GHz with a maximum of return loss S11 -43 dB at operating frequency10.5 GHz and with a Gain of 5.64dB.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Raimi Dewan ◽  
Mohamad Kamal A Rahim ◽  
Mohamad Rijal Hamid ◽  
M.H. Mokhtar ◽  
M.F.M. Yusoff

In this paper, an Ultra Wideband (UWB) antenna is presented. The antenna radiating patch is circular in shape with coplanar waveguide (CPW) feeding technique. The proposed chamfering to the outer edges of the ground plane successfully widens the -10 dB impedance bandwidth of the antenna to cover from 1.92 GHz up to 15.16 GHz (correspond to 155% fractional bandwidth). The antenna gain varies from 2 to 5 dB over the operating band. Parametrical studies have been conducted for four different conditions of the ground plane; without chamfering, chamfering on the inner edges, chamfering on the outer edges and both chamfering of inner and outer edges. The effects of distinguished chamfering conditions to antenna performance are analyzed.  The measured and simulated results for reflection coefficients and radiation patterns (2.45 GHz, 3.5 GHz and 5.8 GHz) are presented. The corresponding realized gains are 2.14 dB, 2.85 dB and 3.4 dB respectively. The measured results satisfactorily agreed with the simulated ones. The antenna is 8 - 37 % wider bandwidth than previous research.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 403
Author(s):  
Abdul Rashid .O. Mumin ◽  
R. Alias ◽  
Jiwa Abdullah ◽  
Raed A Abdulhasan ◽  
Samsul Haimi Dahlan ◽  
...  

Performance characteristics of head-worn antenna based on dielectric substrate for WBAN application with various dielectric constant for square slot patch antenna are demonstrated in this paper. The impact of Electromagnetic (EM) energy from antenna towards human head and on antenna performance changes due to human head proximity are explored in this paper. The human head exposed to 5.8 GHz on ISM frequency band and radiation pattern, return loss, efficiency, and bandwidth and SAR distribution value performance have been thoroughly explored. However, decreasing the antenna size is a great topic ‎of antenna development, which differentiates antenna performance for a small antenna. Multilayered human head phantom having five layers are constructed based on different tissues and these tissues represent human head parts such as (Skin, fat, Cerebrospinal fluid (CSF), bone and brain), all of each tissues are based on their electromagnetic properties and set at 5.8GHz.The proposed antenna with human head model simulated through (FDTD) using CST and variation of parameters of antenna with MATLAB.  Antenna with FR4 substrate produces the highest SAR values while antenna with RT5880 substrate has the lowest SAR value 0.206 W/kg and 0.0784 W/kg at 5.8 GHz frequency exposed for 10g tissue respectively. It can be observed that the radiation pattern shows that the antenna gain with substrate of Rogers RT5880 is increased from front –to-back from 7.1 to 7.29 dB in the free space and on human head respectively. A good agreement between simulation and measurements in free space are obtained. The presented prototype has a potential to work for ISM applications.


Sign in / Sign up

Export Citation Format

Share Document