scholarly journals Compact Self Complementary UWB Antenna with Triple Band Notch Characteristics for Wireless Communications

the objective of this paper is to design and analysis of the Ultra wide Band Micro strip Patch Antenna which covers the Ultra Wide Band 2.9 to 21.5 GHz. To get an optimum results and performance of the projected self complementary UWB antenna depends on the study of dissimilar methods for optimizing the different parameters of the radiating patch along with notch dimensions. The proposed self complementary UWB antenna with overlapped rectangular shape patch and Defected DGS is designed with C-Slot in the radiating patch element and ground with L shaped slot which covers the whole UWB frequency band apart from band notches WLAN (5.125-5.825 GHz) ,Satellite Communications (7.9-8.5 GHz) and Ku band 13.4-14.5GHz.The UWB antenna performance is improved in terms of the Bandwidth by including Rectangular shaped slit between feeding element and the radiating patch. Now a days it is important to avoid existing wireless communication networks from the design of UWB antenna. The self complementary UWB antenna impedance bandwidth from 2.9 GHz to 21.5 GHz with a maximum of return loss S11 -43 dB at operating frequency10.5 GHz and with a Gain of 5.64dB.

This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


2021 ◽  
Author(s):  
Srikanth Itapu

Abstract A Co-Planar Waveguide fed circular ultra-wide band antenna with modified ground-plane and feedline is designed on a FR4 (ϵr=4.3) substrate of thickness 0.01λ0. The proposed antenna exhibits an overall impedance bandwidth ranging from 2.99 GHz to 18.0 GHz and beyond (with S11< -10 dB). Design parameters have been optimized to achieve the UWB bandwidth. The measured radiation patterns of this antenna are omnidirectional in H- plane and bidirectional in E-plane. An extended impedance bandwidth is achieved as a result of modified feed-line. The proposed antenna can be used for medical imaging and urban IoT applications.


This works discuss about the design and development of a metamaterial triangular micro strip ultra-wideband antenna for C-Band communication. This study includes design and performance analysis of patch based antenna to serve C- band applications such as satellite communications. In first scenario, simple triangular antenna with normal ground plane has designed and analyzed. And In second scenario, to improve the antenna radiation, ground has altered and replaced with a unit cell structure. To further improve the antenna performance Split Ring Resonators are incorporated along with radiating patch. In these three different scenarios, antenna performance has been improved from first scenario to last scenario, while dimension of antenna got miniaturized, which is most desirable feature. The antenna gain of antenna in three scenarios is 4.96 db, 5.65 db and 6.15 db respectively. Antenna radiates over 6-7 GHz frequency band in first case, whereas in second scenario it radiates from 5.7 – 7.1 GHz and in third scenario antenna radiates at 5.6-7.4GHz band. This antenna can be placed in limited space.


2017 ◽  
Vol 6 (4) ◽  
pp. 15-21 ◽  
Author(s):  
K. G. Jangid ◽  
P. K. Jain ◽  
B. R. Sharma ◽  
V. K. Saxena ◽  
V. S. Kulhar ◽  
...  

This paper exhibits the design and performance of a coplanar waveguide (CPW) fed triple notched band ultra-wide band (UWB) antenna. Proposed prototype has two U-shaped slots on the patch and an inverted U slot in feed line with a metal reflector beneath the radiating element. Proposed structure renders wider impedance bandwidth extended between frequencies 2.71GHz to 12.92 GHz for VSWR < 2 with three rejection bands in the frequency ranges 3.456 to 3.988 GHz (WI-MAX IEEE 802.16), 5.27 to 6.032 GHz (WLAN IEEE 802.11 a/h/j/n) and 7.88 to 8.65 GHz (X-band down link satellite system) for VSWR > 2. The utmost simulated gain of proposed antenna with reflector is close to 9.9dBi at 7.4GHz. A sharp reduction observed in the efficiency values of the proposed structure at stop bands. Perhaps, this structure proved as a useful tool for various applications in modern communication systems including UWB.


Author(s):  
Chafai Abdelhamid ◽  
Hedi Sakli ◽  
Nizar Sakli

This paper proposes a method for designing a new <em>ultra wide band</em> (UWB) multiple-input multiple-output (MIMO) antenna with two and four elements. First we presented an ultra-wide band antenna we studied these performances. Then, we studied the application of metamaterials to the design of MIMO antennas for miniaturization and the performance of antennas, in order to guarantee the proper functioning of the MIMO system with a much reduced separation distance between the radiating elements (λ/12), where the coupling can be very weak. The application of these circular double ring SRRs materials on the front plan of the antenna has contributed to the increasing of the antenna performance is studied in terms of S-Parameters, efficiency, diversity gain (DG), radiation properties and envelop correlation coefficient (ECC). It offers advantages such as the reduction of weight and congestion that is beneficial for their integration into satellite communications systems.


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


Author(s):  
Ashish Singh ◽  
Krishnananda Shet ◽  
Durga Prasad

In this chapter, ultra wide band angular ring antenna has been proposed for wireless applications. It has been observed that antenna resonate from 2.9 to 13.1 GHz which has 10.2 GHz bandwidth. Further, it is observed that antenna has nearly omni-directional radiation pattern for E and H-plane at 3.5, 5.8, and 8.5 GHz. The theoretical analysis of the proposed has been done using circuit theory analysis. It was also found using simulation that antenna has good input and output response of 0.2 ns. Proposed antenna measured, simulated, and theoretical results matches for antenna characteristics, i.e., reflection coefficient and radiation pattern. Bandwidth of antenna lies between 2.9 and 13.1 GHz, so this antenna is suitable for Wi-Fi, Wi-Max, digital communication system (DCS), satellite communication, and 5G applications.


In this article, we have presented various techniques that are used for improving different parameters related to UWB antenna. In this Paper, we planned for MIMO antennas in contemporary wireless communication which enhances the bandwidth and gives compact antennas. The antenna band we notched is of planned MIMO which offers an bandwidth with the operational band-notched. The bandwidth capacity of the antenna is from 2.93-20 gigahertz with sharp rejection at WLAN-band with isolation of not exactly - 22 dB is accomplished for the whole band, by utilizing a simple modified shaped structure in the bottom plane, port isolation and transmission capacity are improved. The diversity execution performance is likewise contemplated and whole outcomes shows it’s a potential point of using MIMO based diversity antenna for ultra wide band applications which is demonstrate in this paper. The parameters to assess the performance of the MIMO are explained, the whole examination completed in different sections has been outlined


2021 ◽  
Vol 11 (1) ◽  
pp. 6691-6695
Author(s):  
M. S. Karoui ◽  
N. Ghariani ◽  
M. Lahiani ◽  
H. Ghariani

In this paper, a simple method of enhancing the bandwidth of the Bell-shaped UWB Antenna for indoor localization systems is proposed. Therefore, a modified version of the bell-shaped Ultra-Wide Band (UWB) antenna for indoor localization systems is presented. The proposed antenna is printed on a low-cost FR-4 substrate of 21×27×1.6mm3 size. It is composed of a bell-shaped radiating patch and a multi-slotted ground plane. The measured results show that the proposed antenna has an impedance bandwidth of about 11.2GHz ranging from 3.16GHz to 14.36GHz at S11<−10dB. Compared to the original version, an enhancement of about 5.56GHz in the measured impedance bandwidth was observed.


2021 ◽  
pp. 52-59
Author(s):  
K. S Chakradhar ◽  
◽  
V. Malleswara Rao

From this current paper, 3 separate elliptical slotted ultra- wide band (UWB) antennas are being proposed. These antennas have been designed with a standard PCB design process to be capable of integrating with radiofrequency or microwave circuitry. Two designs were presented in which the initial design comprised a half circular ring radiator and the remaining one considers a half elliptical ring radiator. The third design of the radiator is in the shape of a crescent. The impedance bandwidth of all these presented antenna designs varies from 2.5GHz and reaches to 14GHz with a S11 less than -10GHz. Here, every proposed antenna design also has a consistent radiation pattern across its frequency band of interest. The performance of the antenna is impressive for lower band frequency in UWB system, which differs in a range of 3.1GHz to 5.1GHz. Across the whole frequency band the antenna shows a 10db return loss bandwidth. The antenna is fabricated on RT-duroid substrate and fed with 50 Ω coupled tappered transmission line.


Sign in / Sign up

Export Citation Format

Share Document