current collapse
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 54)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Cedric Reux ◽  
Carlos Paz-Soldan ◽  
Nicholas W. Eidietis ◽  
Michael Lehnen ◽  
Pavel Aleynikov ◽  
...  

Abstract Runaway electrons created during tokamak disruptions pose a threat to a reliable operation of future larger machines. Experiments using Shattered Pellet Injection (SPI) have been carried out at the JET tokamak to investigate ways to prevent their generation or suppress them if avoidance is not sufficient. Avoidance is possible if the SPI contains a sufficiently low fraction of high-Z material, or if it is fired early in advance of a disruption prone to runaway generation. These results are consistent with previous similar findings obtained with Massive Gas Injection. Suppression of an already accelerated beam is not efficient using High-Z material, but deuterium leads to harmless terminations without heat loads. This effect is the combination of a large MHD instability scattering runaway electrons on a large area and the absence of runaway regeneration during the subsequent current collapse thanks to the flushing of high-Z impurities from the runaway companion plasma. This effect also works in situations where the runaway beam moves upwards and undergoes scraping-off on the wall.


Author(s):  
Wei Mao ◽  
shihao Xu ◽  
Haiyong Wang ◽  
Cui Yang ◽  
ShengLei Zhao ◽  
...  

Abstract The treatment effect of the oxygen plasma on the performance of recessed AlGaN/GaN Schottky barrier diodes has been investigated. After the oxygen plasma treatment, the turn-on voltage and reverse leakage current are slightly changed, while the current collapse could be effectively mitigated. The X-ray photoelectron spectroscopy results suggest that a thin surface oxide layer is formed by the oxygen plasma treatment, which is responsible for the reduced current collapse. In addition, the device with oxygen plasma treatment has a relatively more inhomogeneous barrier height.


2021 ◽  
pp. 1-12
Author(s):  
Preeti Singh ◽  
Vandana Kumari ◽  
Manoj Saxena ◽  
Mridula Gupta
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1296
Author(s):  
Haitao Zhang ◽  
Xuanwu Kang ◽  
Yingkui Zheng ◽  
Hao Wu ◽  
Ke Wei ◽  
...  

This work investigates the transient characteristics of an AlGaN/GaN lateral Schottky barrier diode (SBD) and its recovery process with a dedicated dynamic measurement system. Both static and dynamic characteristics were measured, analyzed with the consideration of acceptor/donor traps in the C-doped buffer and GaN channel, and verified by Silvaco TCAD (technology computer aided design) simulations. The energy band, electric field, and electron concentration were monitored in the transient simulation to study the origin of the current collapse in the SBD. Using the verified model, the impact of carbon doping concentration in the buffer and the thickness of the unintentionally doped (UID) GaN channel in the transient behavior was estimated. Several observations were revealed. Firstly, the traps in the GaN channel and buffer layer have a significant impact on the current collapse of the device. A severe deterioration of current collapse can be observed in the SBDs with increasing density of acceptor-like traps. Secondly, the current collapse increases with the thinner UID GaN channel layer. This well-performed simulation model shows promise to be utilized for the dynamic performance optimization of GaN lateral devices.


2021 ◽  
pp. 105293
Author(s):  
D. Godfrey ◽  
D. Nirmal ◽  
L. Arivazhagan ◽  
D. Godwinraj ◽  
N. MohanKumar ◽  
...  

Author(s):  
Jielong Liu ◽  
Yuwei Zhou ◽  
Minhan Mi ◽  
Jiejie Zhu ◽  
Siyu Liu ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 709
Author(s):  
Nicolò Zagni ◽  
Alessandro Chini ◽  
Francesco Maria Puglisi ◽  
Paolo Pavan ◽  
Giovanni Verzellesi

The intentional doping of lateral GaN power high electron mobility transistors (HEMTs) with carbon (C) impurities is a common technique to reduce buffer conductivity and increase breakdown voltage. Due to the introduction of trap levels in the GaN bandgap, it is well known that these impurities give rise to dispersion, leading to the so-called “current collapse” as a collateral effect. Moreover, first-principles calculations and experimental evidence point out that C introduces trap levels of both acceptor and donor types. Here, we report on the modeling of the donor/acceptor compensation ratio (CR), that is, the ratio between the density of donors and acceptors associated with C doping, to consistently and univocally reproduce experimental breakdown voltage (VBD) and current-collapse magnitude (ΔICC). By means of calibrated numerical device simulations, we confirm that ΔICC is controlled by the effective trap concentration (i.e., the difference between the acceptor and donor densities), but we show that it is the total trap concentration (i.e., the sum of acceptor and donor densities) that determines VBD, such that a significant CR of at least 50% (depending on the technology) must be assumed to explain both phenomena quantitatively. The results presented in this work contribute to clarifying several previous reports, and are helpful to device engineers interested in modeling C-doped lateral GaN power HEMTs.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 942
Author(s):  
Wei Lin ◽  
Maojun Wang ◽  
Haozhe Sun ◽  
Bing Xie ◽  
Cheng P. Wen ◽  
...  

Carbon doping in the buffer of AlGaN/GaN high-electron-mobility transistors (HEMTs) leads to the notorious current collapse phenomenon. In this paper, an HEMT structure with a source-connected p-GaN (SCPG) embedded in the carbon-doped semi-insulating buffer is proposed to suppress the buffer-induced current collapse effect. Two-dimensional transient simulation was carried out to show the successful suppression of buffer-induced current collapse in the SCPG-HEMTs compared with conventional HEMTs. The mechanism of suppressing dynamic on-resistance degradation by ejecting holes from the SCPG into the high resistive buffer layer after off-state stress is illustrated based on energy band diagrams. This paper contributes an innovative device structure to potentially solve the buffer-induced degradation of the dynamic on-resistance in GaN power devices.


Sign in / Sign up

Export Citation Format

Share Document