Lateral Skidding Motion of Tracked Vehicles using Wall Reaction Force

Author(s):  
Shotaro Kojima ◽  
Yuki Harata ◽  
Kazunori Ohno ◽  
Takahiro Suzuki ◽  
Yoshito Okada ◽  
...  
2021 ◽  
Vol 1 (2) ◽  
pp. 51-62
Author(s):  
B.V. Padalkin ◽  

The purpose of the study is to increase the completeness and reliability of approaches to deter-mining the components of the cornering resistance a tracked vehicle, as well as to create a method for their assessment, which will be suitable for practical calculations. The article analyzes two components of the moment of cornering resistance of the tracked vehi-cle, which can be distinguished if we consider the interaction of the caterpillar with the support base through separate contact spots (active sections of the tracks located under the road wheels). The first component arises from the linear movement of the active sections of the tracks. The second is caused by the rotational movement of the contact patch about the vertical axis. The paper presents a mathematical model of the interaction of the propeller and a dense support base, which makes it possible to study the dependence of the components of the moment of corner-ing resistance on the geometric parameters of the undercarriage of a tracked vehicle. The horizontal reaction force in this case is presented as a function of the slip coefficient. The possibility of realiz-ing various adhesion qualities of the propulsion unit in the longitudinal and transverse directions of sliding is provided. The model assumes a preliminary division of the contact patch into a finite number of elementary areas. Since the number of elementary sites affects the result, the article con-ducted a study to determine the minimum number of sites to ensure acceptable accuracy. An analysis of the expressions available in the literature was carried out to determine the speci-fied component of the cornering resistance. The new empirical relationships that better agree with the mathematical model were proposed. The study of several existing tracked vehicles, differing in the mass and size of the track support surface, made it possible to conclude that it is advisable to take into account the moment of cornering resistance of the contact patch for various types of tracked vehicles.


2020 ◽  
Vol 5 (4) ◽  
pp. 6575-6582
Author(s):  
Shotaro Kojima ◽  
Kazunori Ohno ◽  
Takahiro Suzuki ◽  
Yoshito Okada ◽  
Thomas Westfechtel ◽  
...  

Author(s):  
Yuto Ohashi ◽  
Shotaro Kojima ◽  
Kazunori Ohno ◽  
Yoshito Okada ◽  
Ryunosuke Hamada ◽  
...  

1993 ◽  
Vol 3 (11) ◽  
pp. 2151-2159 ◽  
Author(s):  
Claudia Eberlein

2015 ◽  
Vol 8 (2) ◽  
pp. 2135-2147 ◽  
Author(s):  
C. Y. Lo

General relativity is incomplete since it does not include the gravitational radiation reaction force and the interaction of gravitation with charged particles. General relativity is confusing because Einstein's covariance principle is invalid in physics. Moreover, there is no bounded dynamic solution for the Einstein equation. Thus, Gullstrand is right and the 1993 Nobel Prize for Physics press release is incorrect. Moreover, awards to Christodoulou reflect the blind faith toward Einstein and accumulated errors in mathematics. Note that the Einstein equation with an electromagnetic wave source has no valid solution unless a photonic energy-stress tensor with an anti-gravitational coupling is added. Thus, the photonic energy includes gravitational energy. The existence of anti-gravity coupling implies that the energy conditions in space-time singularity theorems of Hawking and Penrose cannot be satisfied, and thus are irrelevant. Also, the positive mass theorem of Yau and Schoen is misleading, though considered as an achievement by the Fields Medal. E = mc2 is invalid for the electromagnetic energy alone. The discovery of the charge-mass interaction establishes the need for unification of electromagnetism and gravitation and would explain many puzzles. Experimental investigations for further results are important.


2020 ◽  
Author(s):  
Wallace Derricotte ◽  
Huiet Joseph

The mechanism of isomerization of hydroxyacetone to 2-hydroxypropanal is studied within the framework of reaction force analysis at the M06-2X/6-311++G(d,p) level of theory. Three unique pathways are considered: (i) a step-wise mechanism that proceeds through formation of the Z-isomer of their shared enediol intermediate, (ii) a step-wise mechanism that forms the E-isomer of the enediol, and (iii) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol<sup>-1</sup>. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.


Sign in / Sign up

Export Citation Format

Share Document