scholarly journals Dynamic Droop Control in Low-inertia Power Systems

Author(s):  
Yan Jiang ◽  
Richard Pates ◽  
Enrique Mallada
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2207
Author(s):  
Jesus Castro Martinez ◽  
Santiago Arnaltes ◽  
Jaime Alonso-Martinez ◽  
Jose Luis Rodriguez Amenedo

Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation.


2021 ◽  
pp. 110-119
Author(s):  
Jianhua Zhang ◽  
Bin Zhang ◽  
Hongqun Gu ◽  
Bin Li ◽  
Lei Wang

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3141 ◽  
Author(s):  
Donghui Zhang ◽  
Yongbin Wu ◽  
Liansong Xiong ◽  
Chengyong Zhao

Micro-grid has received extensive attention as an effective way to absorb new energy. Compared to large power systems, the micro-grid system consisting of power electronics is relatively weak due to the lack of support for synchronous machines. In this paper, the direct-drive wind turbine (WT) is connected to the low-inertia micro-grid as the research background. Based on the virtual inertia control of the WT, the inertia source and the physical mechanism of the WT connected to the micro-grid system are studied. The inertia characteristics of the rotor of the WT on the electromechanical time-scale, the DC side capacitor on the DC voltage time-scale, and the simulated grid under the droop control are analyzed. The research results show that under the control of the system, the inertia of the system is derived from the WT, DC capacitor, and the micro-grid simulated by droop control converter. The equivalent inertia of each link is determined by the control parameters, steady-state operating point, and structural parameters. The resulting inertia characteristics will have frequency domain characteristics under control. Finally, the correctness of the system inertia analysis conclusion is verified by simulation and experiment.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2662 ◽  
Author(s):  
Abdullahi Oboh Muhammed ◽  
Muhyaddin Rawa

With the recent growing interest in renewable energy integrated power systems across the globe for the various economic and environmental benefits, it is also significant to consider their influence on voltage stability in power systems. Therefore, this paper reports the static voltage stability impact of solar photovoltaic generation on power networks using PowerWorld simulator power-voltage (P–V)- and voltage-reactive power (V–Q)-curves to investigate the renewable energy generator model performance suitability. The impact of varying power factor control and static voltage droop control of a photovoltaic plant on the maximum generated power, threshold voltage profile and reactive power marginal loading has been examined. Besides, the concept of percentage change in voltage-power sensitivity has been systematically utilized to determine the optimal location for the solar photovoltaic generator on the power grid and the feasible penetrations have been defined for selected system buses. From the simulation results it can be concluded that in a steady-state analysis of the grid integrated power system the effects of power factor (pf) control and voltage droop control should be considered by power grid engineers for effective system operation and, equally, the application of percentage change in voltage-power sensitivity should be extended to real networks to determine the best positions for multiple installations of renewable energy resources.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2418 ◽  
Author(s):  
Liancheng Xiu ◽  
Liansong Xiong ◽  
Ping Yang ◽  
Zhiliang Kang

With high penetration of renewable energy, DC distributed power systems (DDPSs) need to improve the inertia response and damping capacity of the power grid. The effects of main circuit parameters and control factors on the inertia, damping and synchronization of the DDPS were studied in this paper. Firstly, the dynamic model of DDPSs based on frequency droop control is established in the DC voltage control (DVC) timescale. Then, a static synchronous generator (SSG) model is used to analyze the parameters that affect the inertial level, damping effect and synchronization capability of the DDPS. The analysis results show that an optimal design of the frequency droop coefficient and proportional integral (PI) parameters of the DC bus voltage control loop can equivalently change the characteristics of inertia and damping when the frequency droop control strategy is applied to the DC/DC converter and the DC bus voltage control strategy is used in the grid-tied inverter. Simulation results verify the correctness of the conclusions. This paper helps to design an effective control strategy for DDPSs to enhance the inertial level and damping effect of the power grid and to improve the stable operation capability of renewable energy systems.


2020 ◽  
Vol 185 ◽  
pp. 106369
Author(s):  
Álvaro Pérez Mayo ◽  
Aitor Saenz-Aguirre ◽  
Fernando Martín ◽  
Javier Vadillo

2016 ◽  
Vol 26 (02) ◽  
pp. 1650028 ◽  
Author(s):  
Eduardo Lenz ◽  
Daniel J. Pagano ◽  
André P. N. Tahim

This paper addresses local and global bifurcations that may appear in electrical power systems, such as DC microgrids, which recently has attracted interest from the electrical engineering society. Most sources in these networks are voltage-type and operate in parallel. In such configuration, the basic technique for stabilizing the bus voltage is the so-called droop control. The main contribution of this work is a codimension-two bifurcation analysis of a small DC microgrid considering the droop control gain and the power processed by the load as bifurcation parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust droop control design. Moreover, the bifurcation analysis also offers a better understanding of the dynamics involved in the problem and how to avoid possible instabilities. Simulation results are presented in order to illustrate the bifurcation analysis.


Sign in / Sign up

Export Citation Format

Share Document