Beam Tilting Approaches Based on Phase Gradient Surface for mmWave Antennas

2020 ◽  
Vol 68 (6) ◽  
pp. 4372-4385 ◽  
Author(s):  
Mohammad Akbari ◽  
Mohammadmahdi Farahani ◽  
Alireza Ghayekhloo ◽  
Saman Zarbakhsh ◽  
Abdel-Razik Sebak ◽  
...  
Author(s):  
Norio Baba ◽  
Norihiko Ichise ◽  
Syunya Watanabe

The tilted beam illumination method is used to improve the resolution comparing with the axial illumination mode. Using this advantage, a restoration method of several tilted beam images covering the full azimuthal range was proposed by Saxton, and experimentally examined. To make this technique more reliable it seems that some practical problems still remain. In this report the restoration was attempted and the problems were considered. In our study, four problems were pointed out for the experiment of the restoration. (1) Accurate beam tilt adjustment to fit the incident beam to the coma-free axis for the symmetrical beam tilting over the full azimuthal range. (2) Accurate measurements of the optical parameters which are necessary to design the restoration filter. Even if the spherical aberration coefficient Cs is known with accuracy and the axial astigmatism is sufficiently compensated, at least the defocus value must be measured. (3) Accurate alignment of the tilt-azimuth series images.


2014 ◽  
Vol 35 (6) ◽  
pp. 1456-1463
Author(s):  
Song Zhou ◽  
Min Bao ◽  
Shi-chao Chen ◽  
Meng-dao Xing ◽  
Zheng Bao

2017 ◽  
Vol 53 (10) ◽  
pp. 683-685 ◽  
Author(s):  
Tao Zhang ◽  
Xiaolei Lv ◽  
Jiang Qian ◽  
Jun Hong ◽  
Ye Yun

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Mohammed Himdi ◽  
Majeed Alkanhal

Abstract This article presents a 60 GHz coplanar fed slotted antenna based on substrate integrated waveguide (SIW) technology for beam-tilting applications. The longitudinal passive slots are fed via associated SIW holes adjacent to the coplanar feed while the main excitation is provided from the microstrip-to-SIW transition. The antenna array achieves an impedance bandwidth of 57–64 GHz with gains reaching to 12 dBi. The passive SIW slots are excited with various orientations of coplanar feeds and associated holes covering an angular beam-tilting from −56° to +56° with an offset of 10° at the central frequency. The novelty of this work is; beam-tilting is achieved without the use of any active/passive phase shifters which improves the design in terms of losses and provide a much simpler alternative compared to the complex geometries available in the literature at the 60 GHz band.


2021 ◽  
Vol 264 ◽  
pp. 118433
Author(s):  
Fangren Qian ◽  
Min Guo ◽  
Zhiqiang Qian ◽  
Bing Zhao ◽  
Jun Li ◽  
...  

2021 ◽  
Vol 118 (7) ◽  
pp. 071104
Author(s):  
D. Barton ◽  
M. Lawrence ◽  
J. Dionne

Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Sign in / Sign up

Export Citation Format

Share Document