scholarly journals A Slot Antenna Array with Reconfigurable RCS Using Liquid Absorber

Author(s):  
Yukun Zou ◽  
Xiangkun Kong ◽  
Lei Xing ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
...  
Keyword(s):  
2017 ◽  
Vol 65 (9) ◽  
pp. 4618-4625 ◽  
Author(s):  
Chih-Yu Cheng ◽  
Jiun-Peng Chen ◽  
Hsin-Lung Su ◽  
Ken-Huang Lin

2018 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  

Recently, the industry and academia there is significant activity in research and development towards the next generation micro and Pico cellular wireless Networks (5th generation). This paper presents, a structure design of microstrip patch antenna array operate at the central frequency of 28 GHz waveband is proposed. The patch antenna array consists of four elements with rectangular patch and uniform distribution. It has a compact size of 26.51 x 20.37 mm with operating frequency at 28 GHz. The inset feed technique is used for the matching between radiating patch and the 50Ω microstrip feedline. The proposed 2x2 antenna array successfully improve the antenna gain up to 8.393dB compare to existing CRLH TL CPW antenna with 2.99 dB, wideband antenna with 7.1 dB and 3.7 dB for broadband elliptical-shaped slot antenna. As a conclusion, the directivity of 10.13 db and efficiency is higher than 80% considered as a potential candidate for the 5G wireless networks and applications.


2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


Sign in / Sign up

Export Citation Format

Share Document