Thermal Conductivity and Thermal Dilatation of Commercial BSCCO (DI-BSCCO) Tapes

2009 ◽  
Vol 19 (3) ◽  
pp. 3034-3036 ◽  
Author(s):  
T. Naito ◽  
H. Fujishiro ◽  
Y. Yamada
2016 ◽  
Vol 16 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. Hrubovčáková ◽  
I. Vasková ◽  
M. Benková ◽  
M. Conev

Abstract The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1] Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-931-C4-934 ◽  
Author(s):  
M. F. Kotkata ◽  
M.B. El-den

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-893-C6-895
Author(s):  
M. Locatelli ◽  
R. Suchail ◽  
E. Zecchi
Keyword(s):  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-247-C6-249 ◽  
Author(s):  
W. Bauernfeind ◽  
J. Keller ◽  
U. Schröder

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Sign in / Sign up

Export Citation Format

Share Document