Simulation by Finite Difference Numerical Method of ${\rm Nb}_{3}{\rm Sn}$ Strand Under Bending Strain

2009 ◽  
Vol 19 (3) ◽  
pp. 2641-2644 ◽  
Author(s):  
C. Fiamozzi Zignani ◽  
V. Corato ◽  
A. della Corte ◽  
A. Di Zenobio ◽  
G. Messina ◽  
...  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Olufunke G Darley ◽  
Adetokunbo A Adenowo ◽  
Abayomi I Yussuff

The finite difference time domain (FDTD) is a technique of the finite difference numerical method and is a simple but powerful and versatile tool that has been widely applied in many scientific and engineering problems. A typical application of the technique is in dealing with electromagnetic (EM) wave interactions with physical structures. This technique has been used to solve governing equations of various systems through obtaining numerical approximations to the time-dependent differential equations for computer simulations. This paper demonstrates the accuracy and versatility of the application of FDTD method by applying it to examine the effect of lightning electromagnetic pulse (LEMP) on a transmission line using a cross-linked polyethylene (XLPE) insulated power cable, as well as to analyze heat diffusion in a microchip heat sink made from Aluminium Alloy 6061. The effect of LEMP on a transmission line showed that the higher the values of the line parameters, the larger the voltages that will be induced on the line and that bigger values of finite difference (FD) parameters give a more accurate model subject to a stability criterion. Accurate modelling of induced voltages ensures that appropriate mitigating techniques can be deployed to reduce or eliminate the damaging effect of these on electrical and/or electronic devices/systems. Similarly, proper modeling of a heat sink provides the ability to closely estimate heat diffusion at product design stage such that a design is confirmed as workable before manufacture; thereby saving cost. Keywords—Finite Difference Method, Finite Difference Time Domain, Engineering Applications, Lightning Electromagnetic Pulse, Heat Diffusion. 


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


2019 ◽  
Vol 53 (2) ◽  
pp. 585-614 ◽  
Author(s):  
Christoph Lehrenfeld ◽  
Maxim Olshanskii

The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document