scholarly journals Surface Electrocardiogram Reconstruction From Intracardiac Electrograms Using a Dynamic Time Delay Artificial Neural Network

2013 ◽  
Vol 60 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Fabienne Porée ◽  
Amar Kachenoura ◽  
Guy Carrault ◽  
Renzo Dal Molin ◽  
Philippe Mabo ◽  
...  
Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2140
Author(s):  
Oleg Kupervasser ◽  
Hennadii Kutomanov ◽  
Ori Levi ◽  
Vladislav Pukshansky ◽  
Roman Yavich

In the paper, visual navigation of a drone is considered. The drone navigation problem consists of two parts. The first part is finding the real position and orientation of the drone. The second part is finding the difference between desirable and real position and orientation of the drone and creation of the correspondent control signal for decreasing the difference. For the first part of the drone navigation problem, the paper presents a method for determining the coordinates of the drone camera with respect to known three-dimensional (3D) ground objects using deep learning. The algorithm has two stages. It causes the algorithm to be easy for interpretation by artificial neural network (ANN) and consequently increases its accuracy. At the first stage, we use the first ANN to find coordinates of the object origin projection. At the second stage, we use the second ANN to find the drone camera position and orientation. The algorithm has high accuracy (these errors were found for the validation set of images as differences between positions and orientations, obtained from a pretrained artificial neural network, and known positions and orientations), it is not sensitive to interference associated with changes in lighting, the appearance of external moving objects and the other phenomena where other methods of visual navigation are not effective. For the second part of the drone navigation problem, the paper presents a method for stabilization of drone flight controlled by autopilot with time delay. Indeed, image processing for navigation demands a lot of time and results in a time delay. However, the proposed method allows to get stable control in the presence of this time delay.


2006 ◽  
Vol 3 (5) ◽  
pp. 2735-2756 ◽  
Author(s):  
M. J. Diamantopoulou ◽  
P. E. Georgiou ◽  
D. M. Papamichail

Abstract. River flow routing provides basic information on a wide range of problems related to the design and operation of river systems. In this paper, three layer cascade correlation Time Delay Artificial Neural Network (TDANN) models have been developed to forecast the one day ahead daily flow at Ilarionas station on the Aliakmon river, in Northern Greece. The networks are time lagged feed-formatted with delayed memory processing elements at the input layer. The network topology is using multiple inputs, which include the time lagged daily flow values further up at Siatista station on the Aliakmon river and at Grevena station on the Venetikos river, which is a tributary to the Aliakmon river and a single output, which are the daily flow values at Ilarionas station. The choice of the input variables introduced to the input layer was based on the cross-correlation. The use of cross-correlation between the ith input series and the output provides a short cut to the problem of the delayed memory determination. Kalman's learning rule was used to modify the artificial neural network weights. The networks are designed by putting weights between neurons, by using the hyperbolic-tangent function for training. The number of nodes in the hidden layer was determined based on the maximum value of the correlation coefficient. The results show a good performance of the TDANN approach for forecasting the daily flow values, at Ilarionas station and demonstrate its adequacy and potential for river flow routing. The TDANN approach introduced in this study is sufficiently general and has great potential to be applicable to many hydrological and environmental applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Amir Rabiee Kenaree ◽  
Shohreh Fatemi

Application of artificial neural network (ANN) has been studied for simulation of the extraction process by supercritical CO2. Supercritical extraction of valerenic acid from Valeriana officianalis L. has been studied and simulated according to the significant operational parameters such as pressure, temperature, and dynamic extraction time. ANN, using multilayer perceptron (MLP) model, is employed to predict the amount of extracted VA versus the studied variables. Three tests, validation, and training data sets in three various scenarios are selected to predict the amount of extracted VA at dynamic time of extraction, working pressure, and temperature values. Levenberg-Marquardt algorithm has been employed to train the MLP network. The model in first scenario has three neurons in one hidden layer, and the models associated with the second and the third scenarios have four neurons in one hidden layer. The determination coefficients are calculated as 0.971, 0.940, and 0.964 for the first, second, and the third scenarios, respectively, demonstrating the effectiveness of the MLP model in simulating this process using any of the scenarios, and accurate prediction of extraction yield has been revealed in different working conditions of pressure, temperature, and dynamic time of extraction.


Author(s):  
JANE BROMLEY ◽  
JAMES W. BENTZ ◽  
LÉON BOTTOU ◽  
ISABELLE GUYON ◽  
YANN LECUN ◽  
...  

This paper describes the development of an algorithm for verification of signatures written on a touch-sensitive pad. The signature verification algorithm is based on an artificial neural network. The novel network presented here, called a “Siamese” time delay neural network, consists of two identical networks joined at their output. During training the network learns to measure the similarity between pairs of signatures. When used for verification, only one half of the Siamese network is evaluated. The output of this half network is the feature vector for the input signature. Verification consists of comparing this feature vector with a stored feature vector for the signer. Signatures closer than a chosen threshold to this stored representation are accepted, all other signatures are rejected as forgeries. System performance is illustrated with experiments performed in the laboratory.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Dihya Maincer ◽  
Moufid Mansour ◽  
Amar Hamache ◽  
Chemseddine Boudjedir ◽  
Moussaab Bounabi

AbstractThis work proposes a switched time delay control scheme based on neural networks for robots subjected to sensors faults. In this scheme, a multilayer perceptron (MLP) artificial neural network (ANN) is introduced to reproduce the same behavior of a robot in the case of no faults. The reproduction characteristic of the MLPs allows instant detection of any important sensor faults. In order to compensate the effects of these faults on the robot’s behavior, a time delay control (TDC) procedure is presented. The proposed controller is composed of two control laws: The first one contains a small gain applied to the faultless robot, while the second scheme uses a high gain that is applied to the robot subjected to faults. The control method applied to the system is decided based on the ANN detection results which switches from the first control law to the second one in the case where an important fault is detected. Simulations are performed on a SCARA arm manipulator to illustrate the feasibility and effectiveness of the proposed controller. The results demonstrate that the free-model aspect of the proposed controller makes it highly suitable for industrial applications.


2019 ◽  
Vol 329 ◽  
pp. 153-164 ◽  
Author(s):  
Lu Lu ◽  
Yi Yu ◽  
Xiaomin Yang ◽  
Wei Wu

Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 456-474
Author(s):  
Al-Waled Al-Dulaimi ◽  
Todd K. Moon ◽  
Jacob H. Gunther

Voice transformation, for example, from a male speaker to a female speaker, is achieved here using a two-level dynamic warping algorithm in conjunction with an artificial neural network. An outer warping process which temporally aligns blocks of speech (dynamic time warp, DTW) invokes an inner warping process, which spectrally aligns based on magnitude spectra (dynamic frequency warp, DFW). The mapping function produced by inner dynamic frequency warp is used to move spectral information from a source speaker to a target speaker. Artifacts arising from this amplitude spectral mapping are reduced by reconstructing phase information. Information obtained by this process is used to train an artificial neural network to produce spectral warping information based on spectral input data. The performance of the speech mapping compared using Mel-Cepstral Distortion (MCD) with previous voice transformation research, and it is shown to perform better than other methods, based on their reported MCD scores.


Sign in / Sign up

Export Citation Format

Share Document