scholarly journals Using Deep Learning for Visual Navigation of Drone with Respect to 3D Ground Objects

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2140
Author(s):  
Oleg Kupervasser ◽  
Hennadii Kutomanov ◽  
Ori Levi ◽  
Vladislav Pukshansky ◽  
Roman Yavich

In the paper, visual navigation of a drone is considered. The drone navigation problem consists of two parts. The first part is finding the real position and orientation of the drone. The second part is finding the difference between desirable and real position and orientation of the drone and creation of the correspondent control signal for decreasing the difference. For the first part of the drone navigation problem, the paper presents a method for determining the coordinates of the drone camera with respect to known three-dimensional (3D) ground objects using deep learning. The algorithm has two stages. It causes the algorithm to be easy for interpretation by artificial neural network (ANN) and consequently increases its accuracy. At the first stage, we use the first ANN to find coordinates of the object origin projection. At the second stage, we use the second ANN to find the drone camera position and orientation. The algorithm has high accuracy (these errors were found for the validation set of images as differences between positions and orientations, obtained from a pretrained artificial neural network, and known positions and orientations), it is not sensitive to interference associated with changes in lighting, the appearance of external moving objects and the other phenomena where other methods of visual navigation are not effective. For the second part of the drone navigation problem, the paper presents a method for stabilization of drone flight controlled by autopilot with time delay. Indeed, image processing for navigation demands a lot of time and results in a time delay. However, the proposed method allows to get stable control in the presence of this time delay.

2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


Author(s):  
Thomas P. Trappenberg

This chapter discusses the basic operation of an artificial neural network which is the major paradigm of deep learning. The name derives from an analogy to a biological brain. The discussion begins by outlining the basic operations of neurons in the brain and how these operations are abstracted by simple neuron models. It then builds networks of artificial neurons that constitute much of the recent success of AI. The focus of this chapter is on using such techniques, with subsequent consideration of their theoretical embedding.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shifei Ding ◽  
Nan Zhang ◽  
Xinzheng Xu ◽  
Lili Guo ◽  
Jian Zhang

Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM) put forward deep extreme learning machine (DELM) and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI) competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiuling Ren ◽  
Yanhui You ◽  
Qihao Yu ◽  
Guike Zhang ◽  
Pan Yue ◽  
...  

Thermal conductivity is an important thermal parameter in engineering design in cold regions. By measuring the thermal conductivity of clay using a transient hot-wire method in the laboratory, the influential factors of the thermal conductivity of soils during the freezing process were analyzed, and a predictive model of thermal conductivity was developed with an artificial neural network (ANN) technology. The results show that the variation of thermal conductivity can be divided into three stages with decreasing temperature, positive temperature stage, transition stage, and negative temperature stage. The thermal conductivity increases sharply in the transition stage. The difference between the thermal conductivity at positive and negative temperature is small when the dry density of the soil specimens is larger than the critical dry density, while the difference is large if the dry density is less than the critical dry density. As the negative temperature decreases, the larger the moisture content of the soil specimens, the larger the increase of thermal conductivity. The effect of initial moisture content on thermal conductivity is more significant than that of dry density and temperature. The change tendency of the thermal conductivity calculated by the established ANN model is basically consistent with that of the laboratory-measured values, indicating that this model can be able to accurately predict the thermal conductivity of the soil specimens in the freezing process.


Sign in / Sign up

Export Citation Format

Share Document