scholarly journals Effective Ultrasonic Stimulation in Human Peripheral Nervous System

Author(s):  
Thomas Riis ◽  
Jan Kubanek
2021 ◽  
Author(s):  
Thomas Riis ◽  
Jan Kubanek

AbstractObjectiveLow-intensity ultrasound can stimulate excitable cells in a noninvasive and targeted manner, but which parameters are effective has remained elusive. This question has been difficult to answer because differences in transducers and parameters—frequency in particular—lead to profound differences in the stimulated tissue volumes. The objective of this study is to control for these differences and evaluate which ultrasound parameters are effective in stimulating excitable cells.MethodsHere, we stimulated the human peripheral nervous system using a single transducer operating in a range of frequencies, and matched the stimulated volumes with an acoustic aperture.ResultsWe found that low frequencies (300 kHz) are substantially more effective in generating tactile and nociceptive responses in humans compared to high frequencies (900 kHz). The strong effect of ultrasound frequency was observed for all pressures tested, for continuous and pulsed stimuli, and for tactile and nociceptive responses.ConclusionThis prominent effect may be explained by a mechanical force associated with ultrasound. The effect is not due to heating, which would be weaker at the low frequency.SignificanceThis controlled study reveals that ultrasonic stimulation of excitable cells is stronger at lower frequencies, which guides the choice of transducer hardware for effective ultrasonic stimulation of the peripheral nervous system in humans.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2000 ◽  
Vol 5 (2) ◽  
pp. 3-3
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) describes procedures for rating upper extremity neural deficits in Chapter 3, The Musculoskeletal System, section 3.1k; Chapter 4, The Nervous System, section 4.4 provides additional information and an example. The AMA Guides also divides PNS deficits into sensory and motor and includes pain within the former. The impairment estimates take into account typical manifestations such as limited motion, atrophy, and reflex, trophic, and vasomotor deficits. Lesions of the peripheral nervous system may result in diminished sensation (anesthesia or hypesthesia), abnormal sensation (dysesthesia or paresthesia), or increased sensation (hyperesthesia). Lesions of motor nerves can result in weakness or paralysis of the muscles innervated. Spinal nerve deficits are identified by sensory loss or pain in the dermatome or weakness in the myotome supplied. The steps in estimating brachial plexus impairment are similar to those for spinal and peripheral nerves. Evaluators should take care not to rate the same impairment twice, eg, rating weakness resulting from a peripheral nerve injury and the joss of joint motion due to that weakness.


2004 ◽  
Author(s):  
G. Galietta ◽  
A. Capasso ◽  
A. Fortuna ◽  
F. Fabi ◽  
P. Del Basso ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 11-14
Author(s):  
O. S. Levin ◽  
O. V. Matvievskaya

The article contains a comprehensive analysis of the summary epidemiological data obtained during the observational study to assess the effect of therapy with Ipigrix® on the dynamics of motor and sensory functions, as well as the severity of pain in outpatient patients with various diseases of the peripheral nervous system: mononeuropathy, polyneuropathy and polyradiculopathy of various origins.


Sign in / Sign up

Export Citation Format

Share Document