scholarly journals Millimeter-wave Heating in vitro: Local Microscale Temperature Measurements Correlated to Heat Shock Cellular Response

Author(s):  
Rosa Orlacchio ◽  
Denys Nikolayev ◽  
Yann Le Page ◽  
Yves Le Drean ◽  
Maxim Zhadobov
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rosa Orlacchio ◽  
Yann Le Page ◽  
Yves Le Dréan ◽  
Rémy Le Guével ◽  
Ronan Sauleau ◽  
...  

Abstract Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.


2019 ◽  
Vol 40 (8) ◽  
pp. 553-568 ◽  
Author(s):  
Rosa Orlacchio ◽  
Maxim Zhadobov ◽  
Stanislav I. Alekseev ◽  
Denys Nikolayev ◽  
Ronan Sauleau ◽  
...  

2005 ◽  
Vol 392 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Sang-Gun Ahn ◽  
Soo-A Kim ◽  
Jung-Hoon Yoon ◽  
Panayiotis Vacratsis

HSF1 (heat-shock factor 1) plays an essential role in mediating the appropriate cellular response to diverse forms of physiological stresses. However, it is not clear how HSF1 is regulated by interacting proteins under normal and stressful conditions. In the present study, Hsc70 (heat-shock cognate 70) was identified as a HSF1-interacting protein using the TAP (tandem affinity purification) system and MS. HSF1 can interact with Hsc70 in vivo and directly in vitro. Interestingly, Hsc70 is required for the regulation of HSF1 during heat stress and subsequent target gene expression in mammalian cells. Moreover, cells transfected with siRNAs (small interfering RNAs) targeted to Hsc70 showed greatly decreased HSF1 activation with expression of HSF1 target genes being dramatically reduced. Finally, loss of Hsc70 expression in cells resulted in an increase in stress-induced apoptosis. These results indicate that Hsc70 is a necessary and critical regulator of HSF1 activities.


1999 ◽  
Vol 112 (10) ◽  
pp. 1465-1476 ◽  
Author(s):  
F. Weighardt ◽  
F. Cobianchi ◽  
L. Cartegni ◽  
I. Chiodi ◽  
A. Villa ◽  
...  

A two-hybrid screening in yeast for proteins interacting with the human hnRNP A1, yielded a nuclear protein of 917 amino acids that we termed hnRNP A1 associated protein (HAP). HAP contains an RNA binding domain (RBD) flanked by a negatively charged domain and by an S/K-R/E-rich region. In in vitro pull-down assays, HAP interacts with hnRNP A1, through its S/K-R/E-rich region, and with several other hnRNPs. HAP was found to be identical to the previously described Scaffold Attachment Factor B (SAF-B) and to HET, a transcriptional regulator of the Heat Shock Protein 27 gene. We show that HAP is a bona fide hnRNP protein, since anti-HAP antibodies immunoprecipitate from HeLa cell nucleoplasm the complete set of hnRNP proteins. Unlike most hnRNP proteins, the subnuclear distribution of HAP is profoundly modified in heat-shocked HeLa cells. Heat-shock treatment at 42 degrees C causes a transcription-dependent recruitment of HAP to a few large nuclear granules that exactly coincide with sites of accumulation of Heat Shock Factor 1 (HSF1). The recruitment of HAP to the granules is temporally delayed with respect to HSF1 and persists for a longer time during recovery at 37 degrees C. The hnRNP complexes immunoprecipitated from nucleoplasm of heat-shocked cells with anti-HAP antibodies have an altered protein composition with respect to canonical complexes. Altogether our results suggest an involvement of HAP in the cellular response to heat shock, possibly at the RNA metabolism level.


2019 ◽  
Vol 1 (4) ◽  
pp. 16-20 ◽  
Author(s):  
A. V. Lugovaya ◽  
N. M. Kalinina ◽  
V. Ph. Mitreikin ◽  
Yu. P. Kovaltchuk ◽  
A. V. Artyomova ◽  
...  

Apoptosis, along with proliferation, is a form of lymphocyte response to activating stimuli. In the early stages of cell differentiation, the apoptotic response prevails and it results to the formation of tolerance to inductor antigen. Mature lymphocytes proliferate in response to stimulation and it means the initial stage in the development of the immune response. Since in this case apoptosis and proliferation acts as alternative processes, their ratio can serve as a measure of the effectiveness of the cellular response to activating signals. The resistance of autoreactive T-cells to apoptosis is the main key point in the development of type 1 diabetes mellitus (T1DM). Autoreactive T-cells migrates from the bloodstream to the islet tissue of the pancreas and take an active part in b cells destruction. The resistance of autoreactive effector T-cells to apoptosis may suggest their high proliferative potential. Therefore, the comparative evaluation of apoptosis and proliferation of peripheral blood lymphocytes can give a more complete picture of their functional state and thus will help to reveal the causes of ineffective peripheral blood T-ceiis apoptosis in patients with T1DM and will help to understand more deeply the pathogenesis of the disease. in this article, the features of proliferative response of peripheral blood T-cells in patients with T1DM and in individuals with high risk of developing T1DM have been studied. Apoptosis of T-cell subpopulations has been investigated. The correlation between the apoptotic markers and the intensity of spontaneous and activation- induced in vitro T-cells proliferation of was revealed. it was determined, that autoreactive peripheral blood T-cells were resistant to apoptosis and demonstrated the increased proliferative potential in patients with T1DM and in individuals with high risk of developing T1DM.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

2019 ◽  
Vol 54 (10) ◽  
pp. 1357-1365
Author(s):  
Luiz Sergio Almeida Camargo ◽  
Fernanda Queiros Costa ◽  
Michele Munk ◽  
Sabine Wohlres‐Viana ◽  
Raquel Varela Serapião ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document