A Composite Mode Differential Gene Regulatory Architecture based on Temporal Expression Profiles

2019 ◽  
Vol 16 (6) ◽  
pp. 1785-1793
Author(s):  
Aurpan Majumder ◽  
Mrityunjay Sarkar ◽  
Prolay Sharma
Author(s):  
Aqeel Hussein Abdulraoof Almatwari ◽  
Mohammadreza Hassandokht ◽  
Frouzandeh Soltani ◽  
Amir Mirzadi Gohari ◽  
Mohammad Javan-Nikkhah

2020 ◽  
Vol 21 (24) ◽  
pp. 9461
Author(s):  
Aurora Savino ◽  
Paolo Provero ◽  
Valeria Poli

Biological systems respond to perturbations through the rewiring of molecular interactions, organised in gene regulatory networks (GRNs). Among these, the increasingly high availability of transcriptomic data makes gene co-expression networks the most exploited ones. Differential co-expression networks are useful tools to identify changes in response to an external perturbation, such as mutations predisposing to cancer development, and leading to changes in the activity of gene expression regulators or signalling. They can help explain the robustness of cancer cells to perturbations and identify promising candidates for targeted therapy, moreover providing higher specificity with respect to standard co-expression methods. Here, we comprehensively review the literature about the methods developed to assess differential co-expression and their applications to cancer biology. Via the comparison of normal and diseased conditions and of different tumour stages, studies based on these methods led to the definition of pathways involved in gene network reorganisation upon oncogenes’ mutations and tumour progression, often converging on immune system signalling. A relevant implementation still lagging behind is the integration of different data types, which would greatly improve network interpretability. Most importantly, performance and predictivity evaluation of the large variety of mathematical models proposed would urgently require experimental validations and systematic comparisons. We believe that future work on differential gene co-expression networks, complemented with additional omics data and experimentally tested, will considerably improve our insights into the biology of tumours.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 301-301
Author(s):  
Chaoyang Li ◽  
Qianglin Liu ◽  
Matt Welborn ◽  
Leshan Wang ◽  
Yuxia Li ◽  
...  

Abstract The amount of intramuscular fat directly influences the meat quality. However, significant differences in the ability to accumulate intramuscular fat are present among different beef cattle breeds. While Wagyu, a cattle breed that originated from Japan, is renowned for abundant intramuscular fat, Brahman cattle generally have very little intramuscular fat accumulation and produce tougher meat. We identified that bovine intramuscular fat is derived from a group of bipotent progenitor cells named fibro/adipogenic progenitors (FAPs) which also give rise to fibroblasts. Thus, the variation in intramuscular fat development between Wagyu and Brahman is likely attributed to the difference in FAPs between these two breeds. In order to understand the gene expression difference between FAPs of the two breeds, single-cell RNA-seq was performed using total single-nucleated cells isolated from the longissimus muscle of young purebred Wagyu, purebred Brahman, and Wagyu-Brahman cross cattle. FAPs constitute the largest single-nucleated cell population in both Wagyu and Brahman skeletal muscle. Multiple subpopulations of FAPs with different gene expression profiles were identified, suggesting that FAP is a heterogeneous population. A unique FAP cluster expressing lower levels of fibrillar collagen and extracellular remodeling enzyme genes but higher levels of select proadipogenic genes was identified exclusively in Wagyu skeletal muscle, which likely contributes to the robust intramuscular adipogenic efficiency of Wagyu FAPs. In conclusion, the difference in the cellular composition and gene expression of FAPs between Wagyu and Brahman cattle likely contribute to their distinct meat quality.


Sign in / Sign up

Export Citation Format

Share Document