Charge Carriers and Time Dependent Currents in BaTiO<inf>3</inf>-Based Ceramic

Author(s):  
Hee Lee ◽  
L. Burton
2021 ◽  
Author(s):  
James Langford ◽  
Xi Xu ◽  
Yang Yang

Plasmons, which are collective and coherent oscillations of charge carriers driven by an external field, play an important role in applications such as solar energy harvesting, sensing, and catalysis. Plasmons can be found in bulk and nanomaterials, and in recent years, plasmons have also been identified in molecules and these molecules have been utilized to build plasmonic devices. As molecular plasmons can no longer be described by classical electrodynamics, a description using quantum mechanics is necessary. Many methods have been developed to identify and quantify molecular plasmons based on the properties of plasmonic excitations. However, there is not currently a method that is widely accepted, connects to collectivity and coherence, and is computationally practical. Here we develop a metric to accurately and efficiently identify and quantify plasmons in molecules. A number, which we call plasmon character index (PCI), can be calculated for each electronic excited state and describes the plasmonicity of the excitation. PCI is developed from the collective and coherent excitation picture in orbitals and shows excellent agreement with the predictions from scaled time-dependent density functional theory but is vastly more computationally efficient. Therefore, PCI can be a useful tool in identifying and quantifying plasmons and will inform the rational design of plasmonic molecules and small nanomaterials.


Author(s):  
Wanli Yang ◽  
Yuxing Liang

AbstractBased on the mechanical motion equation, Gauss’s law, and the current continuity condition, we study a few typical transient effects in a piezoelectric semiconductor (PS) fiber to realize the startup and turning-off functions of common piezotronic devices. In this study, the transient extensional vibration induced by a suddenly applied axial time-dependent force is examined in a cantilevered n-type ZnO nanofiber. Neither the magnitude of the loadings nor the doping concentration significantly affects the propagation caused by disturbance of the axial displacement. However, both of the factors play an important role in the propagation caused by disturbance of the electron concentrations. This indicates that the electromechanical coupling effect can be expected to directly determine the electronic performance of the devices. In addition, the assumption of previous simplified models which neglect the charge carriers in Gauss’s law is discussed, showing that this assumption has a little influence on the startup state when the doping concentration is smaller than 1021 m−3. This suggests that the screening effect of the carriers on the polarized electric field is much reduced in this situation, and that the state is gradually transforming into a pure piezoelectric state. Nevertheless, the carriers can provide a damping effect, which means that the previous simplified models do not sufficiently describe the turning-off state. The numerical results show that the present study has referential value with respect to the design of newly multifunctional PS devices.


Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


Author(s):  
Yimei Zhu ◽  
J. Tafto

The electron holes confined to the CuO2-plane are the charge carriers in high-temperature superconductors, and thus, the distribution of charge plays a key role in determining their superconducting properties. While it has been known for a long time that in principle, electron diffraction at low angles is very sensitive to charge transfer, we, for the first time, show that under a proper TEM imaging condition, it is possible to directly image charge in crystals with a large unit cell. We apply this new way of studying charge distribution to the technologically important Bi2Sr2Ca1Cu2O8+δ superconductors.Charged particles interact with the electrostatic potential, and thus, for small scattering angles, the incident particle sees a nuclei that is screened by the electron cloud. Hence, the scattering amplitude mainly is determined by the net charge of the ion. Comparing with the high Z neutral Bi atom, we note that the scattering amplitude of the hole or an electron is larger at small scattering angles. This is in stark contrast to the displacements which contribute negligibly to the electron diffraction pattern at small angles because of the short g-vectors.


Sign in / Sign up

Export Citation Format

Share Document