scholarly journals Scalable Spectrum Allocation and User Association in Networks With Many Small Cells

2017 ◽  
Vol 65 (7) ◽  
pp. 2931-2942 ◽  
Author(s):  
Binnan Zhuang ◽  
Dongning Guo ◽  
Ermin Wei ◽  
Michael L. Honig
2015 ◽  
Vol 33 (6) ◽  
pp. 1025-1039 ◽  
Author(s):  
Yicheng Lin ◽  
Wei Bao ◽  
Wei Yu ◽  
Ben Liang

Author(s):  
Kinda Khawam ◽  
Samer Lahoud ◽  
Melhem El Helou ◽  
Steven Martin ◽  
Gang Feng

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Rony Kumer Saha

In this paper, by exploiting the frequency-domain, we propose a countrywide millimeter-wave (mmWave) spectrum allocation and reuse technique to allocate and reuse spatially the countrywide 28 GHz licensed spectrum and 60 GHz unlicensed spectrum to small cells (SCs) on each floor of a building of each Fifth-Generation (5G) New Radio (NR) Mobile Network Operator (MNO) of an arbitrary country. We develop an interference management scheme, model user statistics per SC, and interferer statistics per apartment and formulate the amount of the 28 GHz and 60 GHz spectra per MNO. We derive average capacity, spectral efficiency (SE), energy efficiency (EE), and cost efficiency (CE) when employing the proposed technique, as well as the traditional static licensed spectrum allocation technique. We discuss the implementation of the proposed technique and evaluate the performance under two scenarios, namely, SCs operate only in the 28 GHz in scenario 1, and both 28 GHz and 60 GHz in scenario 2. Extensive results and analyses are carried out for four MNOs, i.e., MNOs 1, 2, 3, and 4, in scenario 1. However, in scenario 2, in addition to MNOs 1, 2, 3, and 4, an incumbent Wireless Gigabit (WiGig) operator is considered. It is shown that the proposed technique with no co-channel interference can improve average capacity, SE, EE, and CE of MNO 1 by 3 times, 1.65 times, 75%, and 60%, respectively, in scenario 1, whereas 6.12 times, 5.104 times, 85.8%, and 83.15%, respectively, in scenario 2. Moreover, with an increase in reuse factors, SE increases linearly and EE increases negative exponentially. Further, we show that the proposed technique can satisfy SE and EE requirements for sixth-generation (6G) mobile systems. Finally, we discuss offered benefits and point out key issues of the proposed technique for further studies.


Author(s):  
Farah Akif ◽  
Aqdas Malik ◽  
Ijaz Qureshi ◽  
Ayesha Abassi

With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also show user association can also be controlled using number of antennas reserved for access or backhaul.


Sign in / Sign up

Export Citation Format

Share Document