scholarly journals Generalized Selection in Wireless Powered Networks with Non-Linear Energy Harvesting

Author(s):  
Maria Dimitropoulou ◽  
Constantinos Psomas ◽  
Ioannis Krikidis
Keyword(s):  
Author(s):  
Kui Xu ◽  
Ming Zhang ◽  
Jie Liu ◽  
Nan Sha ◽  
Wei Xie ◽  
...  

Abstract In this paper, we design the simultaneous wireless information and power transfer (SWIPT) protocol for massive multi-input multi-output (mMIMO) system with non-linear energy-harvesting (EH) terminals. In this system, the base station (BS) serves a set of uplink fixed half-duplex (HD) terminals with non-linear energy harvester. Considering the non-linearity of practical energy-harvesting circuits, we adopt the realistic non-linear EH model rather than the idealistic linear EH model. The proposed SWIPT protocol can be divided into two phases. The first phase is designed for terminals EH and downlink training. A beam domain energy beamforming method is employed for the wireless power transmission. In the second phase, the BS forms the two-layer receive beamformers for the reception of signals transmitted by terminals. In order to improve the spectral efficiency (SE) of the system, the BS transmit power- and time-switching ratios are optimized. Simulation results show the superiority of the proposed beam-domain SWIPT protocol on SE performance compared with the conventional mMIMO SWIPT protocols.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 175213-175221 ◽  
Author(s):  
Lei Ni ◽  
Xinyu Da ◽  
Hang Hu ◽  
Yi Yuan ◽  
Zhengyu Zhu ◽  
...  

2012 ◽  
Vol 23 (13) ◽  
pp. 1423-1432 ◽  
Author(s):  
Roszaidi Ramlan ◽  
Michael J Brennan ◽  
Brian R Mace ◽  
Stephen G Burrow

The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.


Sign in / Sign up

Export Citation Format

Share Document