A Monolithic High-Voltage Li-Ion Battery Charger With Sharp Mode Transition and Partial Current Control Technique

2018 ◽  
Vol 65 (9) ◽  
pp. 3099-3109 ◽  
Author(s):  
Jian-Fu Wu ◽  
Chia-Ling Wei ◽  
Ying-Zong Juang
Author(s):  
Mustapha El Alaoui ◽  
Karim El Khadiri ◽  
Rachid El Alami ◽  
Ahmed Tahiri ◽  
Ahmed Lakhssassi ◽  
...  

A new Li-Ion battery charger interface (BCI) using pulse control (PC) technique is designed and analyzed in this paper. Thanks to the use of PC technique, the main standards of the Li-Ion battery charger, i.e. fast charge, small surface area and high efficiency, are achieved. The proposed charger achieves full charge in forty-one minutes passing by the constant current (CC) charging mode which also included the start-up and the constant voltage mode (CV) charging mode. It designed, simulated and layouted which occupies a small size area 0.1 mm2 by using Taiwan Semiconductor Manufacturing Company 180 nm complementary metal oxide semi-conductor technology (TSMC 180 nm CMOS) technology in Cadence Virtuoso software. The battery voltage VBAT varies between 2.9 V to 4.35 V and the maximum battery current IBAT is 2.1 A in CC charging mode, according to a maximum input voltage VIN equal 5 V. The maximum charging efficiency reaches 98%.


2021 ◽  
Vol 126 ◽  
pp. 107013
Author(s):  
Chloé Bizot ◽  
Marie-Anne Blin ◽  
Pierre Guichard ◽  
Jonathan Hamon ◽  
Vincent Fernandez ◽  
...  

2015 ◽  
Vol 17 (8) ◽  
pp. 5942-5953 ◽  
Author(s):  
Anubhav Jain ◽  
Geoffroy Hautier ◽  
Shyue Ping Ong ◽  
Stephen Dacek ◽  
Gerbrand Ceder

High voltage and high thermal safety are desirable characteristics of cathode materials, but difficult to achieve simultaneously DFT calculations on >1400 Li ion battery cathode materials indicate a complex inverse relationship between voltage and thermal safety.


Sign in / Sign up

Export Citation Format

Share Document