Self-Tuning Position-Tracking Controller for Two-Wheeled Mobile Balancing Robots

2019 ◽  
Vol 66 (6) ◽  
pp. 1008-1012 ◽  
Author(s):  
Seok-Kyoon Kim ◽  
Choon Ki Ahn
Author(s):  
Kai Guo ◽  
Jianhua Wei ◽  
Qiyan Tian

This paper deals with position tracking control of a single-rod electro-hydraulic actuator subject to external disturbances and parameter uncertainties. In previous disturbance observer design methodologies for electro-hydraulic actuators, parameter uncertainties have been commonly regarded as disturbances and lumped together with external perturbations. However, in practical electro-hydraulic systems, system parameters are unknown and varying. If considerable parameter uncertainties exist in the system or if the disturbance dynamics induced by parameter uncertainties exceed the bandwidth of the disturbance observer, estimation accuracy will degrade, which will significantly affect system performance. To solve this problem, an extended disturbance observer is proposed in this paper to estimate disturbances while dealing with parameter uncertainties. In addition, a nonlinear position tracking controller is designed for position tracking based on the proposed disturbance observer using a backstepping technique. The proof of the stability of the overall closed-loop system is based on Lyapunov theory. The performance of the proposed controller is verified through simulations and experiments using a shock absorber as a load force generator. A detailed nonlinear physical model of the load force is developed and implemented in the simulation. The results show that the proposed nonlinear position tracking controller, together with the extended disturbance observer, provide excellent tracking performance in the presence of parameter uncertainties and external disturbances.


Author(s):  
Beshahwired Ayalew ◽  
Kathryn W. Jablokow

An approach to position tracking control based on a cascade of a nonlinear force tracking controller derived from a near input-output linearization framework and a simple feedback plus feed forward position controller is presented. The method exploits the cascade structure to employ a sliding mode pressure force tracking controller as inner-loop and the position tracking controller as an outer-loop. Furthermore, it is highlighted that Lyapunov backstepping analysis can be used to drive performance bounds and reveal trade-offs between the size of uncertainty and measurement errors and the tracking accuracy. The performance of the proposed cascaded robust controller is demonstrated with experiments and simulations on a test system that doesn't necessarily satisfy all of the assumptions made for controller derivation. In particular, a typical comparison of the robust and nominal cascade controllers shows the robust version can recover the performance of the nominal near IO linearizing controller. In addition, model simulation results are included to show the performance of the controller in the presence of some combinations of perturbations or difficult to estimate parameters such as valve coefficient, supply pressure, piston friction, and inclusion of servovalve spool dynamics.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 417-427 ◽  
Author(s):  
H.A. Talebi ◽  
K. Khorasani ◽  
R. V. Patel

In this paper, the problem of tip position tracking control of a flexible-link manipulator is considered. Two neural network schemes are presented. In the first scheme, the controller is composed of a stabilizing joint PD controller and a neural network tracking controller. The objective is to simultaneously achieve hub-position tracking and control of the elastic deflections at the tip. In the second scheme, tracking control of a point along the arm is considered to avoid difficulties associated with the output feedback control of a non-minimum phase flexible manipulator. A separate neural network is employed for determining an appropriate output to be used for feedback. The controller is also composed of a neural network tracking controller and a stabilizing joint PD controller. Experimental results on a single-link flexible manipulator show that the proposed networks result in significant improvements in the system response with an increase in controller dynamic range despite changes in the desired trajectory.


Sign in / Sign up

Export Citation Format

Share Document