Cascaded Robust Nonlinear Position Tracking Control of an Electrohydraulic Actuator: Sliding Mode and Feed Forward

Author(s):  
Beshahwired Ayalew ◽  
Kathryn W. Jablokow

An approach to position tracking control based on a cascade of a nonlinear force tracking controller derived from a near input-output linearization framework and a simple feedback plus feed forward position controller is presented. The method exploits the cascade structure to employ a sliding mode pressure force tracking controller as inner-loop and the position tracking controller as an outer-loop. Furthermore, it is highlighted that Lyapunov backstepping analysis can be used to drive performance bounds and reveal trade-offs between the size of uncertainty and measurement errors and the tracking accuracy. The performance of the proposed cascaded robust controller is demonstrated with experiments and simulations on a test system that doesn't necessarily satisfy all of the assumptions made for controller derivation. In particular, a typical comparison of the robust and nominal cascade controllers shows the robust version can recover the performance of the nominal near IO linearizing controller. In addition, model simulation results are included to show the performance of the controller in the presence of some combinations of perturbations or difficult to estimate parameters such as valve coefficient, supply pressure, piston friction, and inclusion of servovalve spool dynamics.

Author(s):  
Nor Mohd Haziq Norsahperi ◽  
Kumeresan A. Danapalasingam

This paper provides a systematic comparative study of position tracking control of nonlinear robotic manipulators. The main contribution of this study is a comprehensive numerical simulation assessing position tracking performances and energy consumption of integral sliding mode control (ISMC), a linear-quadratic regulator with integral action (LQRT ), and optimal integral sliding mode control (OISMC) under three conditions; namely, Case I) without the coupling effect, Case II) with the coupling effect on Link 1 only, and Case III) with the coupling effect on Link 2 only. The viability of the concept is evaluated based on three performance criteria, i.e., the step-response characteristics, position tracking error, and energy consumption of the aforementioned controllers. Based upon the simulation study, it has been found that OISMC offers performances almost similar to ISMC with more than 90% improvement of tracking performance under several cases compared to LQRT; however, energy consumption is successfully reduced by 3.6% in comparison to ISMC. Energy consumption of OISMC can be further reduced by applying optimization algorithms in tuning the weighting matrices. This paper can be considered significant as a robotic system with high tracking accuracy and low energy consumption is highly demanded to be implemented in smart factories, especially for autonomous systems.


1999 ◽  
Vol 121 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Seung-Bok Choi ◽  
Seung-Sang Cho ◽  
Young-Pil Park

This paper presents robust vibration and position tracking control of a flexible smart structure featuring a piezoceramic actuator. A cantilever beam structure with a surface-bonded piezoceramic actuator is proposed, and its governing equation of motion and associated boundary conditions are derived from Hamilton’s principle. The transfer function from control input voltage to output displacement is then established in Laplace domain considering the hysteresis behavior as a structured plant uncertainty. A robust QFT (quantitative feedback theory) compensator is designed on the basis of a stability criterion which prescribes a bound on the peak value of an M-contour in the Nichols chart (NC). In the formulation of the compensator, disturbance rejection specification and tracking performance bounds are specified to guarantee the robustness of the system to the plant uncertainty and external disturbance. A prefilter is also designed for the improvement of step and sinusoidal tracking control performances. Forced-vibration and tracking control performances are investigated through computer simulation and experimental implementation in order to demonstrate the efficiency and robustness of the proposed control methodology.


Sign in / Sign up

Export Citation Format

Share Document