Conditional Support-Vector-Machine-Based Shared Adaptive Computing Model for Smart City Traffic Management

Author(s):  
Gunasekaran Manogaran ◽  
Joel J. P. C. Rodrigues ◽  
Sergei A. Kozlov ◽  
Karthikbala Manokaran
2014 ◽  
Vol 24 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Baozhen Yao ◽  
Ping Hu ◽  
Mingheng Zhang ◽  
Maoqing Jin

Abstract Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems (ATMISs). An automated incident detection system can effectively provide information on an incident, which can help initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Bin Li ◽  
Yuqing He

The synergy of computational logistics and deep learning provides a new methodology and solution to the operational decisions of container terminal handling systems (CTHS) at the strategic, tactical, and executive levels. Above all, the container terminal logistics tactical operational complexity is discussed by computational logistics, and the liner handling volume (LHV) has important influences on a series of terminal scheduling decision problems. Subsequently, a feature-extraction-based lightweight convolutional and recurrent neural network adaptive computing model (FEB-LCR-ACM) is presented initially to predict the LHV by the fusion of multiple deep learning algorithms and mechanisms, especially for the specific feature extraction package of tsfresh. Consequently, the container-terminal-oriented logistics service scheduling decision support design paradigm is put forward tentatively by FEB-LCR-ACM. Finally, a typical large-scale container terminal of China is chosen to implement, execute, and evaluate the FEB-LCR-ACM based on the terminal running log around the indicator of LHV. In the case of severe vibration of LHV between 2 twenty-foot equivalent units (TEUs) and 4215 TEUs, while forecasting the LHV of 300 liners by the log of five years, the forecasting error within 100 TEUs almost accounts for 80%. When predicting the operation of 350 ships by the log of six years, the forecasting deviation within 100 TEUs reaches up to nearly 90%. The abovementioned two deep learning experimental performances with FEB-LCR-ACM are so far ahead of the forecasting results by the classical machine learning algorithm that is similar to Gaussian support vector machine. Consequently, the FEB-LCR-ACM achieves sufficiently good performance for the LHV prediction with a lightweight deep learning architecture based on the typical small datasets, and then it is supposed to overcome the operational nonlinearity, dynamics, coupling, and complexity of CTHS partially.


2014 ◽  
Vol 687-691 ◽  
pp. 1645-1648
Author(s):  
Chun Yan Kang ◽  
Tie Jun Shi

In the process of cloud computing, the dynamic hierarchical resource index is researched, and the independent confusion cloud computing is studied. This problem has become the focus of data processing. Therefore, it needs to establish improved dynamic layered resource index independent confuse cloud computing model. According to the theory of support vector machine, all of the resources are taken with dynamical layered processing, different levels of resources are taken with the independent confusion cloud computing. The experiment results show that, this algorithm is taken for the dynamic layered resource cloud computing, calculation efficiency can be improved, computational complexity and redundancy are reduced, meet the practical demands of dynamic hierarchical resource index independent confused cloud computing. It has good application value in the cloud computing application.


2018 ◽  
Author(s):  
Clarissa Castellã Xavier

In this paper we present a study about polarity classification of tweets in the traffic domain. Specifically, we use the data in Portuguese language from an account maintained by a traffic management agency. We evaluate the performance of three learning methods: SVM (Support Vector Machine), Naive Bayes and Maximum Entropy. We also explore how the use of balanced vs. unbalanced corpus affects the models behavior. The results show that, in this context, a ML classifier obtains better results than the reported in the literature. In our experiments, SVM trained with a balanced corpus outperforms all tested models, achieving 99% of Accuracy, Average Recall and Average Precision.


2020 ◽  
Author(s):  
V Vasilevska ◽  
K Schlaaf ◽  
H Dobrowolny ◽  
G Meyer-Lotz ◽  
HG Bernstein ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


Sign in / Sign up

Export Citation Format

Share Document