scholarly journals Design of Nonlinear Systems in the Frequency Domain: An Output Frequency Response Function-Based Approach

2018 ◽  
Vol 26 (4) ◽  
pp. 1358-1371 ◽  
Author(s):  
Yunpeng Zhu ◽  
Z. Q. Lang
2004 ◽  
Vol 11 (5-6) ◽  
pp. 685-692 ◽  
Author(s):  
Jiehua Peng ◽  
Jiashi Tang ◽  
Zili Chen

A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.


Author(s):  
Z K Peng ◽  
Z Q Lang

The current paper is concerned with the investigation of the relationship between the harmonic balance method (HBM) and the non-linear output frequency response function (NOFRF) approach in the analysis of non-linear systems. Both are applied to the Duffing's oscillator to demonstrate their relationships. The results reveal that, if the Volterra series representation of a non-linear system is convergent, the harmonic components calculated by the NOFRFs are a solution of the HBM. Moreover, the simulation studies show that, in the convergent cases, the NOFRF method can give more accurate results for the higher-harmonic components than the HBM. The relationship investigated in the current study between the two methods should help researchers and engineers to understand the HBM and the NOFRF methods.


Sign in / Sign up

Export Citation Format

Share Document