scholarly journals Cross-Domain Recognition by Identifying Joint Subspaces of Source Domain and Target Domain

2017 ◽  
Vol 47 (4) ◽  
pp. 1090-1101 ◽  
Author(s):  
Yuewei Lin ◽  
Jing Chen ◽  
Yu Cao ◽  
Youjie Zhou ◽  
Lingfeng Zhang ◽  
...  
Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1994
Author(s):  
Ping Li ◽  
Zhiwei Ni ◽  
Xuhui Zhu ◽  
Juan Song ◽  
Wenying Wu

Domain adaptation manages to learn a robust classifier for target domain, using the source domain, but they often follow different distributions. To bridge distribution shift between the two domains, most of previous works aim to align their feature distributions through feature transformation, of which optimal transport for domain adaptation has attract researchers’ interest, as it can exploit the local information of the two domains in the process of mapping the source instances to the target ones by minimizing Wasserstein distance between their feature distributions. However, it may weaken the feature discriminability of source domain, thus degrade domain adaptation performance. To address this problem, this paper proposes a two-stage feature-based adaptation approach, referred to as optimal transport with dimensionality reduction (OTDR). In the first stage, we apply the dimensionality reduction with intradomain variant maximization but source intraclass compactness minimization, to separate data samples as much as possible and enhance the feature discriminability of the source domain. In the second stage, we leverage optimal transport-based technique to preserve the local information of the two domains. Notably, the desirable properties in the first stage can mitigate the degradation of feature discriminability of the source domain in the second stage. Extensive experiments on several cross-domain image datasets validate that OTDR is superior to its competitors in classification accuracy.


Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


2021 ◽  
Vol 25 (3) ◽  
pp. 627-640
Author(s):  
Jiana Meng ◽  
Yu Dong ◽  
Yingchun Long ◽  
Dandan Zhao

The difficulty of cross-domain text sentiment classification is that the data distributions in the source domain and the target domain are inconsistent. This paper proposes an attention network based on feature sequences (ANFS) for cross-domain sentiment classification, which focuses on important semantic features by using the attention mechanism. Particularly, ANFS uses a three-layer convolutional neural network (CNN) to perform deep feature extraction on the text, and then uses a bidirectional long short-term memory (BiLSTM) to capture the long-term dependency relationship among the text feature sequences. We first transfer the ANFS model trained on the source domain to the target domain and share the parameters of the convolutional layer; then we use a small amount of labeled target domain data to fine-tune the model of the BiLSTM layer and the attention layer. The experimental results on cross-domain sentiment analysis tasks demonstrate that ANFS can significantly outperform the state-of-the-art methods for cross-domain sentiment classification problems.


Author(s):  
Liangyong Yu ◽  
Ran Li ◽  
Xiangrui Zeng ◽  
Hongyi Wang ◽  
Jie Jin ◽  
...  

Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domain may perform poorly in predicting subtomogram classes in the target domain. Results In this article, we adapt a few shot domain adaptation method for deep learning-based cross-domain subtomogram classification. The essential idea of our method consists of two parts: (i) take full advantage of the distribution of plentiful unlabeled target domain data, and (ii) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods. Availability and implementation Software is available online https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 29 (3) ◽  
pp. 611-621
Author(s):  
Depeng Gao ◽  
Jiafeng Liu ◽  
Rui Wu ◽  
Dansong Cheng ◽  
Xiaopeng Fan ◽  
...  

Abstract With the advent of 3D cameras, getting depth information along with RGB images has been facilitated, which is helpful in various computer vision tasks. However, there are two challenges in using these RGB-D images to help recognize RGB images captured by conventional cameras: one is that the depth images are missing at the testing stage, the other is that the training and test data are drawn from different distributions as they are captured using different equipment. To jointly address the two challenges, we propose an asymmetrical transfer learning framework, wherein three classifiers are trained using the RGB and depth images in the source domain and RGB images in the target domain with a structural risk minimization criterion and regularization theory. A cross-modality co-regularizer is used to restrict the two-source classifier in a consistent manner to increase accuracy. Moreover, an L2,1 norm cross-domain co-regularizer is used to magnify significant visual features and inhibit insignificant ones in the weight vectors of the two RGB classifiers. Thus, using the cross-modality and cross-domain co-regularizer, the knowledge of RGB-D images in the source domain is transferred to the target domain to improve the target classifier. The results of the experiment show that the proposed method is one of the most effective ones.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shanshan Dong ◽  
Chang Liu

Sentiment classification for financial texts is of great importance for predicting stock markets and financial crises. At present, with the popularity of applications in the field of natural language processing (NLP) adopting deep learning, the application of automatic text classification and text-based sentiment classification has become more and more extensive. However, in the field of financial text-based sentiment classification, due to a lack of labeled samples, such applications are limited. A domain-adaptation-based financial text sentiment classification method is proposed in this paper, which can adopt source domain (SD) text data with sentiment labels and a large amount of unlabeled target domain (TD) financial text data as training samples for the proposed neural network. The proposed method is a cross-domain transfer-learning-based method. The domain classification subnetwork is added to the original neural network, and the domain classification loss function is also added to the original training loss function. Therefore, the network can simultaneously adapt to the target domain and then accomplish the classification task. The experiment of the proposed sentiment classification transfer learning method is carried out through an open-source dataset. The proposed method in this paper uses the reviews of Amazon Books, DVDs, electronics, and kitchen appliances as the source domain for cross-domain learning, and the classification accuracy rates can reach 65.0%, 61.2%, 61.6%, and 66.3%, respectively. Compared with nontransfer learning, the classification accuracy rate has improved by 11.0%, 7.6%, 11.4%, and 13.4%, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chunfeng Guo ◽  
Bin Wei ◽  
Kun Yu

Automatic biology image classification is essential for biodiversity conservation and ecological study. Recently, due to the record-shattering performance, deep convolutional neural networks (DCNNs) have been used more often in biology image classification. However, training DCNNs requires a large amount of labeled data, which may be difficult to collect for some organisms. This study was carried out to exploit cross-domain transfer learning for DCNNs with limited data. According to the literature, previous studies mainly focus on transferring from ImageNet to a specific domain or transferring between two closely related domains. While this study explores deep transfer learning between species from different domains and analyzes the situation when there is a huge difference between the source domain and the target domain. Inspired by the analysis of previous studies, the effect of biology cross-domain image classification in transfer learning is proposed. In this work, the multiple transfer learning scheme is designed to exploit deep transfer learning on several biology image datasets from different domains. There may be a huge difference between the source domain and the target domain, causing poor performance on transfer learning. To address this problem, multistage transfer learning is proposed by introducing an intermediate domain. The experimental results show the effectiveness of cross-domain transfer learning and the importance of data amount and validate the potential of multistage transfer learning.


2018 ◽  
Vol 30 (3) ◽  
pp. 820-855 ◽  
Author(s):  
Wei Wang ◽  
Hao Wang ◽  
Chen Zhang ◽  
Yang Gao

Learning an appropriate distance metric plays a substantial role in the success of many learning machines. Conventional metric learning algorithms have limited utility when the training and test samples are drawn from related but different domains (i.e., source domain and target domain). In this letter, we propose two novel metric learning algorithms for domain adaptation in an information-theoretic setting, allowing for discriminating power transfer and standard learning machine propagation across two domains. In the first one, a cross-domain Mahalanobis distance is learned by combining three goals: reducing the distribution difference between different domains, preserving the geometry of target domain data, and aligning the geometry of source domain data with label information. Furthermore, we devote our efforts to solving complex domain adaptation problems and go beyond linear cross-domain metric learning by extending the first method to a multiple kernel learning framework. A convex combination of multiple kernels and a linear transformation are adaptively learned in a single optimization, which greatly benefits the exploration of prior knowledge and the description of data characteristics. Comprehensive experiments in three real-world applications (face recognition, text classification, and object categorization) verify that the proposed methods outperform state-of-the-art metric learning and domain adaptation methods.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yixiao Liao ◽  
Ruyi Huang ◽  
Jipu Li ◽  
Zhuyun Chen ◽  
Weihua Li

AbstractIn machinery fault diagnosis, labeled data are always difficult or even impossible to obtain. Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain, which has been widely used for cross domain fault diagnosis. However, existing methods focus on either marginal distribution adaptation (MDA) or conditional distribution adaptation (CDA). In practice, marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence. In this paper, a dynamic distribution adaptation based transfer network (DDATN) is proposed for cross domain bearing fault diagnosis. DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy (IDMMD) for dynamic distribution adaptation (DDA), which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain. The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods.


Author(s):  
Shangyu Chen ◽  
Wenya Wang ◽  
Sinno Jialin Pan

The advancement of deep models poses great challenges to real-world deployment because of the limited computational ability and storage space on edge devices. To solve this problem, existing works have made progress to compress deep models by pruning or quantization. However, most existing methods rely on a large amount of training data and a pre-trained model in the same domain. When only limited in-domain training data is available, these methods fail to perform well. This prompts the idea of transferring knowledge from a resource-rich source domain to a target domain with limited data to perform model compression. In this paper, we propose a method to perform cross-domain pruning by cooperatively training in both domains: taking advantage of data and a pre-trained model from the source domain to assist pruning in the target domain. Specifically, source and target pruned models are trained simultaneously and interactively, with source information transferred through the construction of a cooperative pruning mask. Our method significantly improves pruning quality in the target domain, and shed light to model compression in the cross-domain setting.


Sign in / Sign up

Export Citation Format

Share Document