scholarly journals Sentiment Classification for Financial Texts Based on Deep Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shanshan Dong ◽  
Chang Liu

Sentiment classification for financial texts is of great importance for predicting stock markets and financial crises. At present, with the popularity of applications in the field of natural language processing (NLP) adopting deep learning, the application of automatic text classification and text-based sentiment classification has become more and more extensive. However, in the field of financial text-based sentiment classification, due to a lack of labeled samples, such applications are limited. A domain-adaptation-based financial text sentiment classification method is proposed in this paper, which can adopt source domain (SD) text data with sentiment labels and a large amount of unlabeled target domain (TD) financial text data as training samples for the proposed neural network. The proposed method is a cross-domain transfer-learning-based method. The domain classification subnetwork is added to the original neural network, and the domain classification loss function is also added to the original training loss function. Therefore, the network can simultaneously adapt to the target domain and then accomplish the classification task. The experiment of the proposed sentiment classification transfer learning method is carried out through an open-source dataset. The proposed method in this paper uses the reviews of Amazon Books, DVDs, electronics, and kitchen appliances as the source domain for cross-domain learning, and the classification accuracy rates can reach 65.0%, 61.2%, 61.6%, and 66.3%, respectively. Compared with nontransfer learning, the classification accuracy rate has improved by 11.0%, 7.6%, 11.4%, and 13.4%, respectively.

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 162 ◽  
Author(s):  
Jiana Meng ◽  
Yingchun Long ◽  
Yuhai Yu ◽  
Dandan Zhao ◽  
Shuang Liu

Transfer learning is one of the popular methods for solving the problem that the models built on the source domain cannot be directly applied to the target domain in the cross-domain sentiment classification. This paper proposes a transfer learning method based on the multi-layer convolutional neural network (CNN). Interestingly, we construct a convolutional neural network model to extract features from the source domain and share the weights in the convolutional layer and the pooling layer between the source and target domain samples. Next, we fine-tune the weights in the last layer, named the fully connected layer, and transfer the models from the source domain to the target domain. Comparing with the classical transfer learning methods, the method proposed in this paper does not need to retrain the network for the target domain. The experimental evaluation of the cross-domain data set shows that the proposed method achieves a relatively good performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Rong Fei ◽  
Quanzhu Yao ◽  
Yuanbo Zhu ◽  
Qingzheng Xu ◽  
Aimin Li ◽  
...  

Within the sentiment classification field, the convolutional neural network (CNN) and long short-term memory (LSTM) are praised for their classification and prediction performance, but their accuracy, loss rate, and time are not ideal. To this purpose, a deep learning structure combining the improved cross entropy and weight for word is proposed for solving cross-domain sentiment classification, which focuses on achieving better text sentiment classification by optimizing and improving recurrent neural network (RNN) and CNN. Firstly, we use the idea of hinge loss function (hinge loss) and the triplet loss function (triplet loss) to improve the cross entropy loss. The improved cross entropy loss function is combined with the CNN model and LSTM network which are tested in the two classification problems. Then, the LSTM binary-optimize (LSTM-BO) model and CNN binary-optimize (CNN-BO) model are proposed, which are more effective in fitting the predicted errors and preventing overfitting. Finally, considering the characteristics of the processing text of the recurrent neural network, the influence of input words for the final classification is analysed, which can obtain the importance of each word to the classification results. The experiment results show that within the same time, the proposed weight-recurrent neural network (W-RNN) model gives higher weight to words with stronger emotional tendency to reduce the loss of emotional information, which improves the accuracy of classification.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1714
Author(s):  
JiWoong Park ◽  
SungChan Nam ◽  
HongBeom Choi ◽  
YoungEun Ko ◽  
Young-Bae Ko

This paper presents an improved ultra-wideband (UWB) line of sight (LOS)/non-line of sight (NLOS) identification scheme based on a hybrid method of deep learning and transfer learning. Previous studies have limitations, in that the classification accuracy significantly decreases in an unknown place. To solve this problem, we propose a transfer learning-based NLOS identification method for classifying the NLOS conditions of the UWB signal in an unmeasured environment. Both the multilayer perceptron and convolutional neural network (CNN) are introduced as classifiers for NLOS conditions. We evaluate the proposed scheme by conducting experiments in both measured and unmeasured environments. Channel data were measured using a Decawave EVK1000 in two similar indoor office environments. In the unmeasured environment, the existing CNN method showed an accuracy of approximately 44%, but when the proposed scheme was applied to the CNN, it showed an accuracy of up to 98%. The training time of the proposed scheme was measured to be approximately 48 times faster than that of the existing CNN. When comparing the proposed scheme with learning a new CNN in an unmeasured environment, the proposed scheme demonstrated an approximately 10% higher accuracy and approximately five times faster training time.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3992 ◽  
Author(s):  
Jingmei Li ◽  
Weifei Wu ◽  
Di Xue ◽  
Peng Gao

Transfer learning can enhance classification performance of a target domain with insufficient training data by utilizing knowledge relating to the target domain from source domain. Nowadays, it is common to see two or more source domains available for knowledge transfer, which can improve performance of learning tasks in the target domain. However, the classification performance of the target domain decreases due to mismatching of probability distribution. Recent studies have shown that deep learning can build deep structures by extracting more effective features to resist the mismatching. In this paper, we propose a new multi-source deep transfer neural network algorithm, MultiDTNN, based on convolutional neural network and multi-source transfer learning. In MultiDTNN, joint probability distribution adaptation (JPDA) is used for reducing the mismatching between source and target domains to enhance features transferability of the source domain in deep neural networks. Then, the convolutional neural network is trained by utilizing the datasets of each source and target domain to obtain a set of classifiers. Finally, the designed selection strategy selects classifier with the smallest classification error on the target domain from the set to assemble the MultiDTNN framework. The effectiveness of the proposed MultiDTNN is verified by comparing it with other state-of-the-art deep transfer learning on three datasets.


2021 ◽  
Vol 25 (3) ◽  
pp. 627-640
Author(s):  
Jiana Meng ◽  
Yu Dong ◽  
Yingchun Long ◽  
Dandan Zhao

The difficulty of cross-domain text sentiment classification is that the data distributions in the source domain and the target domain are inconsistent. This paper proposes an attention network based on feature sequences (ANFS) for cross-domain sentiment classification, which focuses on important semantic features by using the attention mechanism. Particularly, ANFS uses a three-layer convolutional neural network (CNN) to perform deep feature extraction on the text, and then uses a bidirectional long short-term memory (BiLSTM) to capture the long-term dependency relationship among the text feature sequences. We first transfer the ANFS model trained on the source domain to the target domain and share the parameters of the convolutional layer; then we use a small amount of labeled target domain data to fine-tune the model of the BiLSTM layer and the attention layer. The experimental results on cross-domain sentiment analysis tasks demonstrate that ANFS can significantly outperform the state-of-the-art methods for cross-domain sentiment classification problems.


Author(s):  
Liangyong Yu ◽  
Ran Li ◽  
Xiangrui Zeng ◽  
Hongyi Wang ◽  
Jie Jin ◽  
...  

Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domain may perform poorly in predicting subtomogram classes in the target domain. Results In this article, we adapt a few shot domain adaptation method for deep learning-based cross-domain subtomogram classification. The essential idea of our method consists of two parts: (i) take full advantage of the distribution of plentiful unlabeled target domain data, and (ii) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods. Availability and implementation Software is available online https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online.


MATEMATIKA ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 99-111
Author(s):  
Kartika Fithriasari ◽  
Saidah Zahrotul Jannah ◽  
Zakya Reyhana

Social media is used as a tool by many people to express their opinions. Sentiment analysis for social media is very important, as it allows information to be obtained about public opinion on government performance. The goal of this research is to learn about the opinions of Surabaya citizens, using deep learning methods. The data are extracted from the official Twitter accounts of the Surabaya government and a private radio station in Surabaya. The data are grouped into two categories: positive and negative sentiments. This research is conducted in three steps: data pre-processing, sentiment classification, and visualization. Data pre-processing is required before modelling approaches are applied. It is used to transform the unstructured text data into structured data. The data pre-processing consists of case folding, tokenizing, and the removal of stop words. Deep learning methods are then applied to the data. A Backpropagation Neural Network (BNN) and a Convolutional Neural Network (CNN) are used to perform the sentiment classification. The BNN and CNN are compared using various metrics, such as precision, sensitivity, and area under the receiver operating characteristic curve (AUC). A word cloud is then used to visualize the data and find the most frequent words in each class. The results show that the sentiment classification with CNN is better than that with the BNN because the values for the precision, sensitivity and AUC are higher.


Author(s):  
Zheng Li ◽  
Yu Zhang ◽  
Ying Wei ◽  
Yuxiang Wu ◽  
Qiang Yang

Domain adaptation tasks such as cross-domain sentiment classification have raised much attention in recent years. Due to the domain discrepancy, a sentiment classifier trained in a source domain may not work well when directly applied to a target domain. Traditional methods need to manually select pivots, which behave in the same way for discriminative learning in both domains. Recently, deep learning methods have been proposed to learn a representation shared by domains. However, they lack the interpretability to directly identify the pivots. To address the problem, we introduce an end-to-end Adversarial Memory Network (AMN) for cross-domain sentiment classification. Unlike existing methods, our approach can automatically capture the pivots using an attention mechanism. Our framework consists of two parameter-shared memory networks: one is for sentiment classification and the other is for domain classification. The two networks are jointly trained so that the selected features minimize the sentiment classification error and at the same time make the domain classifier indiscriminative between the representations from the source or target domains. Moreover, unlike deep learning methods that cannot tell us which words are the pivots, our approach can offer a direct visualization of them. Experiments on the Amazon review dataset demonstrate that our approach can significantly outperform state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document