domain transfer learning
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 33)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Shu Jiang ◽  
Zuchao Li ◽  
Hai Zhao ◽  
Bao-Liang Lu ◽  
Rui Wang

In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific (in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers that perform well on the in-domain data usually suffer from significant performance degradation on the out-of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-domain transfer learning. Specifically, we adopt a pre-trained language model BERT for training on the source domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show the potential of self-learning to cross-lingual transfer learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chunfeng Guo ◽  
Bin Wei ◽  
Kun Yu

Automatic biology image classification is essential for biodiversity conservation and ecological study. Recently, due to the record-shattering performance, deep convolutional neural networks (DCNNs) have been used more often in biology image classification. However, training DCNNs requires a large amount of labeled data, which may be difficult to collect for some organisms. This study was carried out to exploit cross-domain transfer learning for DCNNs with limited data. According to the literature, previous studies mainly focus on transferring from ImageNet to a specific domain or transferring between two closely related domains. While this study explores deep transfer learning between species from different domains and analyzes the situation when there is a huge difference between the source domain and the target domain. Inspired by the analysis of previous studies, the effect of biology cross-domain image classification in transfer learning is proposed. In this work, the multiple transfer learning scheme is designed to exploit deep transfer learning on several biology image datasets from different domains. There may be a huge difference between the source domain and the target domain, causing poor performance on transfer learning. To address this problem, multistage transfer learning is proposed by introducing an intermediate domain. The experimental results show the effectiveness of cross-domain transfer learning and the importance of data amount and validate the potential of multistage transfer learning.


2021 ◽  
pp. 107976
Author(s):  
Erik Otović ◽  
Marko Njirjak ◽  
Dario Jozinović ◽  
Goran Mauša ◽  
Alberto Michelini ◽  
...  

2021 ◽  
Author(s):  
Yu Xia ◽  
Changqing Shen ◽  
Zaigang Chen ◽  
Lin Kong ◽  
Weiguo Huang ◽  
...  

2021 ◽  
Vol 13 (17) ◽  
pp. 3383
Author(s):  
Shengwu Qin ◽  
Xu Guo ◽  
Jingbo Sun ◽  
Shuangshuang Qiao ◽  
Lingshuai Zhang ◽  
...  

Using convolutional neural network (CNN) methods and satellite images for landslide identification and classification is a very efficient and popular task in geological hazard investigations. However, traditional CNNs have two disadvantages: (1) insufficient training images from the study area and (2) uneven distribution of the training set and validation set. In this paper, we introduced distant domain transfer learning (DDTL) methods for landslide detection and classification. We first introduce scene classification satellite imagery into the landslide detection task. In addition, in order to more effectively extract information from satellite images, we innovatively add an attention mechanism to DDTL (AM-DDTL). In this paper, the Longgang study area, a district in Shenzhen City, Guangdong Province, has only 177 samples as the landslide target domain. We examine the effect of DDTL by comparing three methods: the convolutional CNN, pretrained model and DDTL. We compare different attention mechanisms based on the DDTL. The experimental results show that the DDTL method has better detection performance than the normal CNN, and the AM-DDTL models achieve 94% classification accuracy, which is 7% higher than the conventional DDTL method. The requirements for the detection and classification of potential landslides at different disaster zones can be met by applying the AM-DDTL algorithm, which outperforms traditional CNN methods.


Author(s):  
Wojciech Ostrowski ◽  
Arnav Arora ◽  
Pepa Atanasova ◽  
Isabelle Augenstein

Recent work has proposed multi-hop models and datasets for studying complex natural language reasoning. One notable task requiring multi-hop reasoning is fact checking, where a set of connected evidence pieces leads to the final verdict of a claim. However, existing datasets either do not provide annotations for gold evidence pages, or the only dataset which does (FEVER) mostly consists of claims which can be fact-checked with simple reasoning and is constructed artificially. Here, we study more complex claim verification of naturally occurring claims with multiple hops over interconnected evidence chunks. We: 1) construct a small annotated dataset, PolitiHop, of evidence sentences for claim verification; 2) compare it to existing multi-hop datasets; and 3) study how to transfer knowledge from more extensive in- and out-of-domain resources to PolitiHop. We find that the task is complex and achieve the best performance with an architecture that specifically models reasoning over evidence pieces in combination with in-domain transfer learning.


Sign in / Sign up

Export Citation Format

Share Document