Transient stability study of an unbalanced distribution system with distributed generation

Author(s):  
Isadora C. Dias ◽  
Mariana Resener ◽  
Luciane N. Canha ◽  
Paulo R. S. Pereira
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongwei Ren ◽  
Congying Han ◽  
Tiande Guo ◽  
Wei Pei

With the distributed generation technology widely applied, some system problems such as overvoltages and undervoltages are gradually remarkable, which are caused by distributed generations like wind energy system (WES) and photovoltaic system (PVS) because of their probabilistic output power which relied on natural conditions. Since the impacts of WES and PVS are important in the distribution system voltage quality, we study these in this paper using new models with the probability density function of node voltage and the cumulative distribution function of total losses. We apply these models to solve the IEEE33 distribution system to be chosen in IEEE standard database. We compare our method with the Monte Carlo simulation method in three different cases, respectively. In the three cases, these results not only can provide the important reference information for the next stage optimization design, system reliability, and safety analysis but also can reduce amount of calculation.


Author(s):  
Mehrnoosh Vatani

<p>Adding distributed Generators (DGs) to the passive electrical networks causes major changes in the specifications of the network including voltage profile, short circuit level and transient stability. In this paper, the effect of DGs switching transient in network is considered. The DGs location are changed in different buses. Two types of DGs are used (i.e. wind and synchronous DGs). Switching transient signals are time variant. It has a continuous spectrum of frequency. Fast Fourier and Wavelet transform methods are used for transient analysis. The proposed method is applied to IEEE-13 Bus distribution system.</p>


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


Sign in / Sign up

Export Citation Format

Share Document