Correlation for estimating solar cell temperature based on a tropical field operation of a photovoltaic system

Author(s):  
Azah Mohamed ◽  
Tamer Khatib
Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1902 ◽  
Author(s):  
Asmaa Ahmed ◽  
Katie Shanks ◽  
Senthilarasu Sundaram ◽  
Tapas Kumar Mallick

Concentrator photovoltaics have several advantages over flat plate systems. However, the increase in solar concentration usually leads to an increase in the solar cell temperature, which decreases the performance of the system. Therefore, in this paper, we investigate the performance and temperature limits of a high concentration photovoltaic Thermal system (HCPVT) based on a 1 cm2 multi-junction solar cell subjected to a concentration ratio from 500× to 2000× by using three different types of cooling fluids (water, ethylene glycol and water mixture (60:40), and syltherm oil 800). The results show that, for this configuration, the maximum volumetric temperature of the solar cell did not exceed the manufacturer’s recommended limit for the tested fluids. At 2000× the lowest solar cell temperature obtained by using water was 93.5 °C, while it reached as high as 109 °C by using syltherm oil 800, which is almost equal to the maximum operating limit provided by the manufacturer (110 °C). Overall, the best performance in terms of temperature distribution, thermal, and electrical efficiency was achieved by using water, while the highest outlet temperature was obtained by using syltherm oil 800.


Author(s):  
Tapas Kumar Mallick ◽  
Sendhil Kumar Natarajan

In this work, an experimentally validated two dimensional finite element model was refined to predict the solar cell temperature of the novel Concentrating Photovoltaic’s (CPV) system. The corresponding 2-D numerical simulation of solar cell temperature for novel concentrating PV system of 10x was presented in this work. Based on the 2-D thermal model, solar cell temperature has been predicted for various boundary conditions. In addition to that, the effects of the ambient temperature and the solar radiation on the solar cell temperature have also been investigated for the proposed CPV system. Based on the influencing parameters of ambient temperature and solar radiation, a separate solar cell temperature correlation has been proposed to predict the cell temperature for the given range of parameters.


2015 ◽  
Vol 1090 ◽  
pp. 167-172 ◽  
Author(s):  
Zhi Gang Zhao ◽  
Chun Jie Zhang ◽  
Pu Gao ◽  
Xing Gong

Establishing a general and precise solar cell temperature model is of crucial importance for photovoltaic system modeling and the loss analysis of output power and conversion efficiency. Based on the complex mechanism of solar cell temperature, this paper studies the steady state estimation model of solar cell temperature. Firstly, based on the approximate linear relationship of air temperature, solar radiation intensity, wind speed and solar cell temperature, the polynomial model of solar cell temperature is established and the unknown parameters of the model are extracted with the differential evolution algorithm. Secondly, Experimental acquisition platform is built to reduce the effects of air humidity solar incidence angle on the PV cell temperature. Finally, it shows that the estimated steady-state model is reliable and it fits better performance than other literature submitted through the experimental comparison.


2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


Author(s):  
Allison Gray ◽  
Robert Boehm ◽  
Kenneth W. Stone

Cooling of photovoltaic cells under high intensity solar irradiance is a major concern when designing concentrating photovoltaic systems. The cell temperature will increase if the waste heat is not removed and the cell voltage/power will decrease with increasing cell temperature. This paper presents an analysis of the passive cooling system on the Amonix high concentration photovoltaic system (HCPV). The concentrator geometry is described. A model of the HCPV passive cooling system was made using Gambit. Assumptions are discussed that were made to create the numerical model based on the actual system, the methods for drawing the model is discussed, and images of the model are shown. Fluent was used to compute the numerical results. In addition to the theoretical results that were computed, measurements were made on a system in the field. These data are compared to the theoretical data and differences are calculated. Theoretical conditions that were studied included uniform cell temperatures and worst case weather scenarios, i.e., no wind, high ambient conditions, and high solar irradiance. The performance of the Amonix high concentrating system could be improved if more waste heat were removed from the cell. Now that a theoretical model has been developed and verified, it will be used to investigate different designs and material for increasing the cooling of the system.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Sandeep S. Joshi ◽  
Ashwinkumar S. Dhoble

The solar photovoltaic thermal system (PVT) facilitates conversion of incoming solar radiations into heat and electricity simultaneously. The beam split photovoltaic thermal system (BSPVT) is one of the PVT systems. In this system, the incoming solar beam is splitted and used separately for PV and thermal system. The feasibility of water, silicone oil, and coconut oil as spectrum filter for C–Si solar photovoltaic system is reported in the literature recently. However, the changes in the optical behavior of the liquids due to extended exposure to sunlight (aging effect) had not been considered in most of the previous studies. The current study includes the methodology for the selection of liquids for BSPVT systems, estimation of external quantum efficiency (EQE) of a solar cell using liquids, and the aging effect on the liquid spectrum filters. The spectral response of the solar cell is analyzed using BENTHAM, (PVE 300) for 300–1100 nm. In this study, it has been observed that the aging of silicone oil reduces the electrical performance of the solar cell. On the other hand, the aged coconut oil improves the electrical performance of the solar cell as compared to the fresh coconut oil spectrum filter.


Sign in / Sign up

Export Citation Format

Share Document