A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy

2017 ◽  
Vol 24 (6) ◽  
pp. 3894-3897 ◽  
Author(s):  
D. Dey ◽  
B. Chatterjee ◽  
S. Dalai ◽  
S. Munshi ◽  
S. Chakravorti

A rapid dissemination of Android operating system in smart phone market has resulted in an exponential growth of threats to mobile applications. Various studies have been carried out in academia and industry for the identification and classification of malicious applications using machine learning and deep learning algorithms. Convolution Neural Network is a deep learning technique which has gained popularity in speech and image recognition. The conventional solution for identifying Android malware needs learning based on pre-extracted features to preserve high performance for detecting Android malware. In order to reduce the efforts and domain expertise involved in hand-feature engineering, we have generated the grayscale images of AndroidManifest.xml and classes.dex files which are extracted from the Android package and applied Convolution Neural Network for classifying the images. The experiments are conducted on a recent dataset of 1747 malicious Android applications. The results indicate that classes.dex file gives better results as compared to the AndroidManifest.xml and also demonstrate that model performs better as the image become larger.


Author(s):  
D.A Janeera ◽  
P. Amudhavalli ◽  
P Sherubha ◽  
S.P Sasirekha ◽  
P. Anantha Christu Raj ◽  
...  

Author(s):  
Vinit Kumar Gunjan ◽  
Rashmi Pathak ◽  
Omveer Singh

This article describes how to establish the neural network technique for various image groupings in a convolution neural network (CNN) training. In addition, it also suggests initial classification results using CNN learning characteristics and classification of images from different categories. To determine the correct architecture, we explore a transfer learning technique, called Fine-Tuning of Deep Learning Technology, a dataset used to provide solutions for individually classified image-classes.


Author(s):  
Yasir Eltigani Ali Mustaf ◽  
◽  
Bashir Hassan Ismail ◽  

Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hao Wu ◽  
Zhi Zhou

Computer vision provides effective solutions in many imaging relation problems, including automatic image segmentation and classification. Artificially trained models can be employed to tag images and identify objects spontaneously. In large-scale manufacturing, industrial cameras are utilized to take constant images of components for several reasons. Due to the limitations caused by motion, lens distortion, and noise, some defective images are captured, which are to be identified and separated. One common way to address this problem is by looking into these images manually. However, this solution is not only very time-consuming but is also inaccurate. The paper proposes a deep learning-based artificially intelligent system that can quickly train and identify faulty images. For this purpose, a pretrained convolution neural network based on the PyTorch framework is employed to extract discriminating features from the dataset, which is then used for the classification task. In order to eliminate the chances of overfitting, the proposed model also employed Dropout technology to adjust the network. The experimental study reveals that the system can precisely classify the normal and defective images with an accuracy of over 91%.


2020 ◽  
Author(s):  
Hao Quan ◽  
Xiaosong Xu ◽  
Tingting Zheng ◽  
Zhi Li ◽  
Mingfang Zhao ◽  
...  

Abstract Objective: A deep learning framework for detecting COVID-19 is developed, and a small amount of chest X-ray data is used to accurately screen COVID-19.Methods: In this paper, we propose a deep learning framework that integrates convolution neural network and capsule network. DenseNet and CapsNet fusion are used to give full play to their respective advantages, reduce the dependence of convolution neural network on a large amount of data, and can quickly and accurately distinguish COVID-19 from Non-COVID-19 through chest X-ray imaging.Results: A total of 1472 chest X-ray COVID-19 and non-COVID-19 images are used, this method can achieve an accuracy of 99.32% and a precision of 100%, with 98.55% sensitivity and 100% specificity.Conclusion: These results show that the deep fusion neural network DenseCapsNet has good performance in novel coronavirus pneumonia X-ray detection. We also prove through experiments that the detection performance of DenseCapsNet is not affected fundamentally by a lack of data augmentation and pre-training.


Sign in / Sign up

Export Citation Format

Share Document