Robust Control Scheme for Three-Phase Grid-Connected Inverters With LCL-Filter Under Unbalanced and Distorted Grid Conditions

2018 ◽  
Vol 33 (2) ◽  
pp. 506-515 ◽  
Author(s):  
Ngoc-Bao Lai ◽  
Kyeong-Hwa Kim
Author(s):  
Ismail Boukhechem ◽  
Ahcen Boukadoum ◽  
Lahcene Boukelkoul ◽  
Houssam Eddine Medouce ◽  
Rima Lebied

<div data-canvas-width="397.43840959483975">This study presents a new scheme of control for the synchronization of a photovoltaic (PV) system with a three-phase grid without a line sensor. The approach of the proposed synchronization technique is developed to extract the</div><div>maximum of PV energy and inject it in the network for various conditions of voltage, and to ensure that the currents injected into the three-phase network emulate the wished sinusoidal forms even when the mains grid voltage is no longer ideal. This paper in troduces a new technique of synchronization and elimination of the disturbances created by the distorted tension based on the direct power control without voltage sensors (VF_DPC) with the help of second-order generalized integrator (SOGI) associated with a self-tuning filter(STF) to extract the fundamental virtual flux. The simulation of the proposed system is realized in MATLAB/Simulink environment.</div>


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Muhammad Rasool ◽  
Muhammad Khan ◽  
Zahoor Ahmed ◽  
Muhammad Saeed

Recently, power quality improvement has gained a lot of attention due to the rapidly increasing use of power electronics equipment. Several control strategies for DC/AC Voltage Source Inverters (VSI) have been developed to obtain good quality output with low harmonic distortion. This paper proposes a robust control scheme to improve the power quality of a three-phase DC/AC VSI. The control scheme includes an outer voltage loop and an inner current loop, with both controllers designed by the standard H∞ robust control technique. The system with the proposed controller has a low total harmonic distortion (THD) and improved power quality of output voltage in the presence of linear and non-linear loads. The simulation is carried out in MATLAB/Simulink environment, and the results of the proposed control scheme are compared with the performance of dead-beat (DB) predictive control and conventional proportional integral (PI) control. It is observed from the results that the proposed control scheme outperforms other control schemes in terms of the THD level, having a better steady-state and transient performance.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Sign in / Sign up

Export Citation Format

Share Document