scholarly journals Stator Winding Internal Thermal Monitoring and Analysis Using In Situ FBG Sensing Technology

2018 ◽  
Vol 33 (3) ◽  
pp. 1508-1518 ◽  
Author(s):  
Anees Mohammed ◽  
Sinisa Djurovic
2005 ◽  
Vol 8 (05) ◽  
pp. 445-451
Author(s):  
Huanwen Cui ◽  
Yannong Dong ◽  
Shekhar Sinha ◽  
Rintu Kalita ◽  
Younes Jalali

Summary A method is presented for estimating the distribution of a parameter related to the productivity index along the length of a liner-completed horizontal well, using measurements of well flowing pressure at multiple points along the path of flow in the wellbore. This is the concept of near-wellbore diagnosis with multipoint pressure measurements, which in principle can be made with fiber-optic sensors. The deployment mechanism of the sensors is not modeled in this study, although the temperature version of such sensors has been deployed in horizontal wells on an extended-tail-pipe or stinger completion. (The temperature sensors also have been deployed in horizontal wells with sand-screen completions, in direct contact with the formation, but that configuration is not investigated in this study.) The parameter that is estimated is known in reservoir-simulation terminology as the connection factor (CF), which represents the hydraulic coupling or connectivity between the reservoir and the wellbore (between formation gridblocks and well segments). Parameter CF has units of md-ft, similar to flow capacity, or productivity index multiplied by viscosity. Specifically, the parameter is directly proportional to the geometric mean of the permeability perpendicular to the horizontal axis of the well and is inversely related to skin. No attempts are made in this study to estimate these parameters individually, which may require recourse to other methods of well diagnosis(e.g., dynamic formation testing, transient analysis, and production logging). The method applies to flow under constant-rate conditions and yields estimates of the CF, which represents the quality of the formation in the vicinity of the well and the integrity of the completion along the well trajectory. The quality of the inversion is determined by the spatial density and accuracy of the multipoint measurements. Inversion quality also depends on knowledge of the wellbore hydraulic characteristics and the relative permeability characteristics of the formation. The basic configuration investigated in this study consists of a five-node pressure array in a 2,000-fthorizontal well experiencing a total pressure drop of approximately 60 psi when produced at 10,000 STB/D. A reasonable estimate of the distribution of the parametric group CF is obtained even when allowing for measurement drift and errors in liner roughness and relative permeability exponent. Also, the inversion can be rendered insensitive to knowledge of the far-field permeability through a scaling technique. Therefore, good estimates of the near-wellbore CF profile can be obtained with uncertain knowledge of the reservoir permeability field. This is important because the technique can be applied not only to early-time but also to late-time data. The application of the multipoint pressure method is illustrated through a series of examples, and its potential for near-wellbore formation evaluation for horizontal wells is described. Introduction Horizontal wells can be diagnosed on the basis of information derived from openhole and cased-hole surveys. These include petrophysical logs, dynamic formation testers, production logging, and pressure-transient testing. With the advent of permanent sensing technologies and the development of methods of production-data inversion or history matching, a new form of cased-hole diagnosis can be envisaged, with improved spatial and temporal coverage and without the need for in-well intervention and interruption of production. The impact of such methods on reservoir-scale characterization can also be significant. There are two main preconditions for the development of such a methodology, one concerning sensing technology and the other concerning interpretation methodology. Permanent sensing technology has made great progress during the last decade, with the development of single-point and distributed measurements that can be deployed with the completion (pressure, flow rate, and distributed temperature). However, these systems are typically developed as stand alone measurement units and do not enjoy the required degree of integration. Current modeling methods, however, can be used to provide an incentive for such integration. The well-diagnosis problem is decoupled in our investigation into diagnosis of flow condition in the wellbore and diagnosis of near-wellbore formation characteristics. (By "near-wellbore," we mean the wellbore gridblock scale.)This is partly to adhere to the conventional demarcation between production logging and dynamic formation evaluation and partly to show the natural consequence of the mathematical problem. Basically, the wellbore-diagnosis problem (determination of flux distribution, as in production logging) can treat the formation simply as a boundary condition, but the formation-evaluation problem cannot do the same (i.e., treat the wellbore interface as a boundary condition) because evaluation is based on measurements made inside the wellbore. Thus, both the wellbore and the formation have to betaken into account. (Sensors that are in direct contact with the formation, as mentioned in the Summary, are emerging.8 Therefore, the evolution of this problem is to be expected.) In this study, the permanent or in-situ analog of dynamic formation evaluation is investigated. The in-situ analog of production logging is investigated in a parallel study.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Haiyou Peng ◽  
Bolin Chen ◽  
Ping Dong ◽  
Si chen ◽  
Yunping Liao ◽  
...  

Limited by geological survey methods, processes, and cost, it has long been a difficult thing to accurately detect the position of landslide slip surface and monitor the landslide internal deformation. Fiber Bragg grating (FBG) sensing technology has been widely used in geological engineering and geotechnical engineering due to its high-precision property. In this research, FBG sensing technology was applied to the monitoring of landslide internal deformation in Toudu, Chongqing, China. The in situ monitoring by FBG accurately determined the position of the landslide slip surface. Based on the relationship between fiber grating strain and deflection, the formula between landslide internal deformation and fiber grating strain was obtained, and the rationality of the formula was verified by the monitoring data of surface displacement. Finally, the internal deformation at the monitoring point of the Toudu landslide was calculated and the mechanism of the landslide was analyzed.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5340
Author(s):  
Ching-Yuan Chang ◽  
En-Chieh Chang ◽  
Chi-Wen Huang

This study uses machine vision, feature extraction, and support vector machine (SVM) to compose a vibration monitoring system (VMS) for an in situ evaluation of the performance of industrial motors. The vision-based system respectively offers a spatial and temporal resolution of 1.4 µm and 16.6 ms after the image calibration and the benchmark of a laser displacement sensor (LDS). The embedded program of machine vision has used zero-mean normalized correlation (ZNCC) and peak finding (PF) for tracking the registered characteristics on the object surface. The calibrated VMS provides time–displacement curves related to both horizontal and vertical directions, promising remote inspections of selected points without attaching additional markers or sensors. The experimental setup of the VMS is cost-effective and uncomplicated, supporting universal combinations between the imaging system and computational devices. The procedures of the proposed scheme are (1) setting up a digital camera, (2) calibrating the imaging system, (3) retrieving the data of image streaming, (4) executing the ZNCC criteria, and providing the time–displacement results of selected points. The experiment setup of the proposed VMS is straightforward and can cooperate with surveillances in industrial environments. The embedded program upgrades the functionality of the camera system from the events monitoring to remote measurement without the additional cost of attaching sensors on motors or targets. Edge nodes equipped with the image-tracking program serve as the physical layer and upload the extracted features to a cloud server via the wireless sensor network (WSN). The VMS can provide customized services under the architecture of the cyber–physical system (CPS), and this research offers an early warning alarm of the mechanical system before unexpected downtime. Based on the smart sensing technology, the in situ diagnosis of industrial motors given from the VMS enables preventative maintenance and contributes to the precision measurement of intelligent automation.


2021 ◽  
Author(s):  
Chetan Laddha ◽  
Lorna Ortiz-Soto ◽  
Leslie Baksmaty ◽  
Juan Dominguez-Olivo

Abstract The O&G industry has been producing hydrocarbons from subsea reservoirs for several decades. However, there is a technological gap in the ability to reliably detect and quantify dissolved gases within the water column. This technological gap has in turn led to a scientific gap in our ability to determine the subsurface origin of subsea fluid emissions. Gas releases are commonly found in the marine environment primarily because of naturally occurring seeps and occasionally due to Oil and Gas production activities. There is a need to be able to identify the gas composition and accurately characterize its source (i.e., ongoing microbial activity or thermogenic derived hydrocarbons). However, building a reliable solution which allows this differentiation between thermal and microbial sources in the underwater environment as well as the inference of their subsurface origin requires a multi-disciplinary subsurface workflow coupled comprehensive high-fidelity measurements at the seabed. As one of the front-end building blocks of any robust multi-disciplinary workflow, there is a need for development of an in-situ sensing and sampling capability which allows real-time assessment and geological characterization of the underwater emissions across the upstream industry, from exploration to abandonment. Such a capability would also be complementary to the geohazard and subsurface assessment practices e.g., by reducing lost rig time during interventions by allowing quick characterization of emissions that arise from natural seeps or LOPC (Loss of Primary Containment) events. This paper describes the maturation of a compact underwater in-situ sensing technology deployed from autonomous or tethered underwater vehicles and which enables measurements of gas constituents and their respective isotopes at the seabed.


1993 ◽  
pp. 95-106
Author(s):  
Y. Meng-Yang ◽  
R.R. Rathbone ◽  
J. Hubble ◽  
A.D. Lockett

2019 ◽  
Vol 66 (10) ◽  
pp. 8082-8092 ◽  
Author(s):  
Anees Mohammed ◽  
Juan I. Melecio ◽  
Sinisa Djurovic

Sign in / Sign up

Export Citation Format

Share Document