Multivariate Statistical Investigation of Climatic Changes for Northern & Southern Hemisphere

Author(s):  
Kedar Patel ◽  
Jaimin Shimpi ◽  
Dhaval Kambaliya
Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 119
Author(s):  
Konstantina Pasvanka ◽  
Marios Kostakis ◽  
Maria Tarapoulouzi ◽  
Pavlos Nisianakis ◽  
Nikolaos S. Thomaidis ◽  
...  

Major, minor and trace elements in wines from Greece were determined by inductively coupled plasma–mass spectrometry (ICP–MS). The concentrations of 44 elements (Na, Mg, P, K, Ca, Cu, Co, Cr, Zn, Sn, Fe, Mn, Li, Be, B, V, Sr, Ba, Al, Ag, Ni, As, Sn, Hg, Pb, Sb, Cd, Ti, Ga, Zr, Nb, Pd, Te, La, Sm, Ho, Tm, Yb, W, Os, Au, Tl, Th, U) in 90 white and red wines from six different regions in Greece for two consecutive vinification years, 2017 and 2018, were determined. Results for the elements aforementioned were evaluated by multivariate statistical methods, such as discriminant analysis and cluster analysis, and the wines were discriminated according to wine variety and geographical origin. Due to the specific choice of the analytes for multivariate statistical investigation, a prediction rate by cross-validation of 98% could be achieved. The aim of this study was not only to reveal specific relationships between the wine samples or between the chemical variables in order to classify the wines from different regions and varieties according to their elemental profile (wine authentication), but also to observe the annual fluctuation in the mineral content of the studied wine samples.


2012 ◽  
pp. 643-647
Author(s):  
Tatyana V. Piskazhova ◽  
Peter V. Polyakov ◽  
Nikita A. Sharypov ◽  
Alexander V. Krasovitsky ◽  
Sergey A. Sorokin

2012 ◽  
pp. 643-647
Author(s):  
Tatyana V. Piskazhova ◽  
Peter V. Polyakov ◽  
Nikita A. Sharypov ◽  
Alexander V. Krasovitsky ◽  
Sergey A. Sorokin

2020 ◽  
Vol 16 (2) ◽  
pp. 555-573 ◽  
Author(s):  
Alan T. Kennedy-Asser ◽  
Daniel J. Lunt ◽  
Paul J. Valdes ◽  
Jean-Baptiste Ladant ◽  
Joost Frieling ◽  
...  

Abstract. The global and regional climate changed dramatically with the expansion of the Antarctic Ice Sheet at the Eocene–Oligocene transition (EOT). These large-scale changes are generally linked to declining atmospheric pCO2 levels and/or changes in Southern Ocean gateways such as the Drake Passage around this time. To better understand the Southern Hemisphere regional climatic changes and the impact of glaciation on the Earth's oceans and atmosphere at the EOT, we compiled a database of 10 ocean and 4 land-surface temperature reconstructions from a range of proxy records and compared this with a series of fully coupled, low-resolution climate model simulations from two models (HadCM3BL and FOAM). Regional patterns in the proxy records of temperature show that cooling across the EOT was less at high latitudes and greater at mid-latitudes. While certain climate model simulations show moderate–good performance at recreating the temperature patterns shown in the data before and after the EOT, in general the model simulations do not capture the absolute latitudinal temperature gradient shown by the data, being too cold, particularly at high latitudes. When taking into account the absolute temperature before and after the EOT, as well as the change in temperature across it, simulations with a closed Drake Passage before and after the EOT or with an opening of the Drake Passage across the EOT perform poorly, whereas simulations with a drop in atmospheric pCO2 in combination with ice growth generally perform better. This provides further support for previous research that changes in atmospheric pCO2 are more likely to have been the driver of the EOT climatic changes, as opposed to the opening of the Drake Passage.


2019 ◽  
Author(s):  
Alan T. Kennedy-Asser ◽  
Daniel J. Lunt ◽  
Paul J. Valdes ◽  
Jean-Baptiste Ladant ◽  
Joost Frieling ◽  
...  

Abstract. Global and regional climate changed dramatically with the expansion of the Antarctic Ice sheet at the Eocene-Oligocene Transition (EOT). These large-scale changes are generally linked to declining atmospheric pCO2 levels and/or changes in Southern Ocean gateways such as the Drake Passage around this time. To better understand the Southern Hemisphere regional climatic changes and the impact of glaciation on the Earth’s oceans and atmosphere at the EOT, we compiled a database of sea and land surface temperature reconstructions from a range of proxy records and compared this with a series of fully-coupled climate model simulations. Regional patterns in the proxy records of temperature show that cooling across the EOT was less at high latitudes and greater at mid-latitudes. Climate model simulations have some issues in capturing the zonal mean latitudinal temperature profiles shown by the proxy data, but certain simulations do show moderate-good performance at recreating the temperature patterns shown in the data. When taking into account the absolute temperature before and after the EOT, as well as the change in temperature across it, simulations with a closed Drake Passage before and after the EOT or with an opening of the Drake Passage across the EOT perform poorly, whereas simulations with a drop in atmospheric pCO2 in combination with ice growth generally perform better. This provides further support to previous research that changes in atmospheric pCO2 are more likely to have been the driver of the EOT climatic changes, as opposed to opening of the Drake Passage.


Sign in / Sign up

Export Citation Format

Share Document