Estimating Tree-Root Biomass in Different Depths Using Ground-Penetrating Radar: Evidence from a Controlled Experiment

2013 ◽  
Vol 51 (6) ◽  
pp. 3410-3423 ◽  
Author(s):  
Xihong Cui ◽  
Li Guo ◽  
Jin Chen ◽  
Xuehong Chen ◽  
Xiaolin Zhu
2014 ◽  
Vol 6 (6) ◽  
pp. 5754-5773 ◽  
Author(s):  
Shiping Zhu ◽  
Chunlin Huang ◽  
Yi Su ◽  
Motoyuki Sato

2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Nur Azwin Ismail ◽  
Nordiana Mohd Muztaza ◽  
Rosli Saad

Ground Penetrating Radar (GPR) is a geophysical method that is widely used in geophysical surveys, civil engineering applications, archaeological studies and locating underground utilities or hidden objects. It works by sending electromagnetic (EM) wave into the ground by transmitter and recording the returning signals by receiver. The returning signals bring information about the materials and changes in material parameters at different depths. The changes in dielectric properties () of two adjacent media result in EM wave reflections. In this study, several types of materials with different dielectric properties () are used in order to identify the reflectivity of the EM wave. Results prove that the larger the dielectric contrast, the higher the reflection coefficient thus the stronger the reflection.


2021 ◽  
Vol 13 (17) ◽  
pp. 3494 ◽  
Author(s):  
Nicoleta Iftimie ◽  
Adriana Savin ◽  
Rozina Steigmann ◽  
Gabriel Silviu Dobrescu

Ground-penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in nondestructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR has proven its ability to work in electromagnetic frequency range for subsoil investigations, and it is a risk-reduction strategy for surveying underground various targets and their identification and detection. This paper presents the results of a case study which exceeds the laboratory level being realized in the field in a real case where the scanning conditions are much more difficult using GPR signals for detecting and assessing underground drainage metallic pipes which cross an area with large buildings parallel to the riverbed. The two urban drainage pipes are detected based on GPR imaging. This provides an approximation of their location and depth which are convenient to find from the reconstructed profiles of both simulated and practical GPR signals. The processing of data recorded with GPR tools requires appropriate software for this type of measurement to detect between different reflections at multiple interfaces located at different depths below the surface. In addition to the radargrams recorded and processed with the software corresponding to a GPR device, the paper contains significant results obtained using techniques and algorithms of the processing and post-processing of the signals (background removal and migration) that gave us the opportunity to estimate the location, depth, and profile of pipes, placed into a concrete duct bank, under a structure with different layers, including pavement, with good accuracy.


Geophysics ◽  
1998 ◽  
Vol 63 (6) ◽  
pp. 1925-1932 ◽  
Author(s):  
Jeffrey J. Daniels ◽  
James Brower

A modification of conventional surface ground‐penetrating radar (GPR) was conceived, tested, and successfully applied in the field at Brookhaven National Laboratory (BNL) to investigate waste pits. The modified GPR method consists of making measurements along a traverse line in a sloping trench with the radar’s antenna oriented at an angle of up to 45° from the horizontal. The direction of propagation of the electromagnetic field for this configuration is not vertical, and the amount of energy scattered from objects that are oriented vertically relative to the energy scattered from horizontal layers is increased. This fundamental feature of side‐looking underground radar (SLUR) measurements is illustrated by physical modeling. Measurements made along parallel trenches that are offset at different distances from a vertically oriented object provides GPR cross‐sections with a primary plane of investigation that intersects the vertical feature at different depths. SLUR was used at BNL in conjunction with conventional surface GPR measurements (displayed as 3-D blocks and plan‐view time slices) to enhance the vertical definition and improve the depth estimates of the waste pits.


2014 ◽  
Vol 88 (4) ◽  
pp. 657-669 ◽  
Author(s):  
Kira A. Borden ◽  
Marney E. Isaac ◽  
Naresh V. Thevathasan ◽  
Andrew M. Gordon ◽  
Sean C. Thomas

2021 ◽  
Vol 873 (1) ◽  
pp. 012041
Author(s):  
M A Firdaus ◽  
Widodo ◽  
Fatkhan

Abstract In recent years, siltation has become quite a problem. It has been the main cause of flooding and a rapid decline in water quality. It is usually caused by a high river sedimentation rate and/or uncontrolled waste disposal. The increased rate of erosion also means that river sedimentation occurs faster than normal and could lead to environmental hazards, wildlife deaths, and the disruption of food and drinking water supply among other things. The question is how to monitor the sedimentation process of rivers without damaging the river itself. The suitable geophysical method is GPR. GPR is an active, non-intrusive geophysical method in which electromagnetic radiation and the reflected signals in the form of radar pulses are used for subsurface imaging. The objective is to investigate river sedimentation using GPR, we created the synthetic models based on geological models of rivers with different depths to create their 2-D radargrams to predict the actual model. We set up the first model RSM-I as control which consists of a layer of freshwater with ρ = 16 Ωm, k = 81 and μ r = 1 of depth 5 m, two layers of sandstone with ρ = 850 Ωm, k = 2.5 and μ r = 1 of total depth 4 m, and a layer of claystone with ρ = 120 Ωm, k = 11 and μ r = 1 of depth 1 m. RSM-II and III are added with a buildup of saturated sediment with ρ = 30 Ωm, k = 15, and μ r = 1 of depth 2.5 and 4 m, respectively. The radargrams’ reflector for each model shows a two-way travel time of 300-350, 150-200, and 60-90 ns in their respective order. GPR models can differentiate between the saturated sediment and freshwater, it shows good results regarding sediment investigation in rivers.


2021 ◽  
Vol 13 (23) ◽  
pp. 4908
Author(s):  
Afolabi Agbona ◽  
Brody Teare ◽  
Henry Ruiz-Guzman ◽  
Iliyana D. Dobreva ◽  
Mark E. Everett ◽  
...  

Cassava as a world food security crop still suffers from an inadequate means to measure early storage root bulking (ESRB), a trait that describes early maturity and a key characteristic of improved cassava varieties. The objective of this study is to evaluate the capability of ground penetrating radar (GPR) for non-destructive assessment of cassava root biomass. GPR was evaluated for this purpose in a field trial conducted in Ibadan, Nigeria. Different methods of processing the GPR radargram were tested, which included time slicing the radargram below the antenna surface in order to reduce ground clutter; to remove coherent sub-horizontal reflected energy; and having the diffracted energy tail collapsed into representative point of origin. GPR features were then extracted using Discrete Fourier Transformation (DFT), and Bayesian Ridge Regression (BRR) models were developed considering one, two and three-way interactions. Prediction accuracies based on Pearson correlation coefficient (r) and coefficient of determination (R2) were estimated by the linear regression of the predicted and observed root biomass. A simple model without interaction produced the best prediction accuracy of r = 0.64 and R2 = 0.41. Our results demonstrate that root biomass can be predicted using GPR and it is expected that the technology will be adopted by cassava breeding programs for selecting early stage root bulking during the crop growth season as a novel method to dramatically increase crop yield.


2020 ◽  
Author(s):  
Dirk Hays ◽  
Matt Wolfe ◽  
Iliyana Dobreva ◽  
Henry Ruiz

<p>Currently atmospheric carbon has reached 405 ppm or 720 GtC.  As is widely known, this increasing atmospheric carbon dioxide, methane and nitrous oxide are primary contributing factors in increasing global temperatures.  Current measurements show that sources of emission such as the burning of fossil fuels contributes 9.9 GtC/yr, while land use change contributes 1.5 GtC/yr. We have identified that crops possessing a subsurface rhizome in particular, in addition to high root biomass, are essential and capable of increasing crop derived soil carbon sequestration by 10-fold.  If the presence of a high biomass rhizome were bred into the world’s major grain crops wheat, rice, maize, barley, sorghum and millets and grown worldwide in no-tillage conditions, these crops could sequester and offset current carbon emissions by 9Gt carbon on a yearly basis. We have developed a new ground penetrating radar instrument and analytical software, which will be presented, as a needed for high throughput non-destructive phenotyping, selection and speed breeding new high root biomass cultivars of the worlds major cultivated crops and forages as a key component for crop-based carbon sequestration driven climate change mitigation. </p>


Sign in / Sign up

Export Citation Format

Share Document