world food security
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 50)

H-INDEX

12
(FIVE YEARS 3)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Monika Elżbieta Jach ◽  
Anna Serefko ◽  
Maria Ziaja ◽  
Marek Kieliszek

In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SPC) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SPC protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.


Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 45-71
Author(s):  
Dhurba Neupane ◽  
Pramila Adhikari ◽  
Dwarika Bhattarai ◽  
Birendra Rana ◽  
Zeeshan Ahmed ◽  
...  

Climate prediction models suggest that agricultural productivity will be significantly affected in the future. The expected rise in average global temperature due to the higher release of greenhouse gases (GHGs) into the atmosphere and increased depletion of water resources with enhanced climate variability will be a serious threat to world food security. Moreover, there is an increase in the frequency and severity of long-lasting drought events over 1/3rd of the global landmass and five times increase in water demand deficits during the 21st century. The top three cereals, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa), are the major and staple food crops of most people across the world. To meet the food demand of the ever-increasing population, which is expected to increase by over 9 billion by 2050, there is a dire need to increase cereal production by approximately 70%. However, we have observed a dramatic decrease in area of fertile and arable land to grow these crops. This trend is likely to increase in the future. Therefore, this review article provides an extensive review on recent and future projected area and production, the growth requirements and greenhouse gas emissions and global warming potential of the top three cereal crops, the effects of climate change on their yields, and the morphological, physiological, biochemical, and hormonal responses of plants to drought. We also discuss the potential strategies to tackle the effects of climate change and increase yields. These strategies include integrated conventional and modern molecular techniques and genomic approach, the implementation of agronomic best management (ABM) practices, and growing climate resilient cereal crops, such as millets. Millets are less resource-intensive crops and release a lower amount of greenhouse gases compared to other cereals. Therefore, millets can be the potential next-generation crops for research to explore the climate-resilient traits and use the information for the improvement of major cereals.


2021 ◽  
Author(s):  
Xiao Sun ◽  
Yumei Sun ◽  
Ling Ma ◽  
Zhen Liu ◽  
Qiyun Wang ◽  
...  

Abstract Temperature drastically determines insect abundances, thus under climate change, identifying major drivers affecting pest insect populations is critical to world food security and agricultural ecosystem health. Here, we conducted a meta-analysis with data obtained from 120 studies across China and Europe from 1970 to 2017 to reveal the roles of climate and agricultural practices in determining populations of wheat aphids. We showed aphid loads on wheat had distinct patterns between these two regions, with a significant increase in China but decrease in Europe over this time period. Although average winter and growing season temperatures increased over this period in both regions, we found no evidence showing climate warming affected aphid loads. Rather, differences in pesticide use, fertilization, land use, and natural enemies between China and Europe may be key factors accounting for differences in aphid pest populations. These findings provide insights for developing effective agroecosystem management under global change. These long-term data suggest that climate change may not be the most important driver of agricultural pest loads. Therefore, under global environmental change, consideration of multiple factors at large spatial-temporal scales will likely provide more insights for developing effective agroecosystem management to safeguard world food security.


Author(s):  
Maywa Montenegro de Wit

AbstractCan gene editing and agroecology be complementary? Various formulations of this question now animate debates over the future of food systems, including in the UN Committee on World Food Security and at the UN Food Systems Summit. Previous analyses have discussed the risks of gene editing for agroecosystems, smallholders, and the concentration of wealth by and for agro-industry. This paper takes a different approach, unpacking the epistemic, socioeconomic, and ontological politics inherent in complementarity. I ask: How is complementarity understood? Who is asking and defining this question? What are the politics of entertaining the debate at all? I sketch the epistemic foundations of science and technology that organize different notions of evidence used in agroecology and genetic engineering. On this base, I offer 8 angles on the compatibility question, exploring the historical contradictions that complementarity discourses reveal and the contemporary work they do. I work through questions of (1) technological neutrality, (2) “root cause” problems, (3) working with nature, (4) encoding racism, and dilemmas of (5) ownership and (6) access. These questions, I argue, require a reckoning with (7) ontologies of coloniality-modernity, which help us get underneath—and beyond—the complementarity question. Finally, I offer (8) a framework for thinking about and working toward technology sovereignty.


2021 ◽  
Vol 13 (23) ◽  
pp. 4908
Author(s):  
Afolabi Agbona ◽  
Brody Teare ◽  
Henry Ruiz-Guzman ◽  
Iliyana D. Dobreva ◽  
Mark E. Everett ◽  
...  

Cassava as a world food security crop still suffers from an inadequate means to measure early storage root bulking (ESRB), a trait that describes early maturity and a key characteristic of improved cassava varieties. The objective of this study is to evaluate the capability of ground penetrating radar (GPR) for non-destructive assessment of cassava root biomass. GPR was evaluated for this purpose in a field trial conducted in Ibadan, Nigeria. Different methods of processing the GPR radargram were tested, which included time slicing the radargram below the antenna surface in order to reduce ground clutter; to remove coherent sub-horizontal reflected energy; and having the diffracted energy tail collapsed into representative point of origin. GPR features were then extracted using Discrete Fourier Transformation (DFT), and Bayesian Ridge Regression (BRR) models were developed considering one, two and three-way interactions. Prediction accuracies based on Pearson correlation coefficient (r) and coefficient of determination (R2) were estimated by the linear regression of the predicted and observed root biomass. A simple model without interaction produced the best prediction accuracy of r = 0.64 and R2 = 0.41. Our results demonstrate that root biomass can be predicted using GPR and it is expected that the technology will be adopted by cassava breeding programs for selecting early stage root bulking during the crop growth season as a novel method to dramatically increase crop yield.


2021 ◽  
Vol 22 (23) ◽  
pp. 12692
Author(s):  
Chao Yu ◽  
Fenghuan Yang ◽  
Dingrong Xue ◽  
Xiuna Wang ◽  
Huamin Chen

σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.


2021 ◽  
Vol 118 (38) ◽  
pp. e2104899118
Author(s):  
David J. Bertioli ◽  
Josh Clevenger ◽  
Ignacio J. Godoy ◽  
H. T. Stalker ◽  
Shona Wood ◽  
...  

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii–enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


2021 ◽  
Author(s):  
Monika Shukla ◽  
B.L. Jangid ◽  
Vikas Khandelwal ◽  
A. Keerthika ◽  
A.K. Shukla

Industrial revolution and fast deforestation in 20th century pushes the earth to face climate change. Climate change became one of the most important global environmental challenges of the 21st century. Besides other weather abnormalities it is potential threat to world food security as agriculture production is directly dependent on various weather parameters. Even a small alteration in climate, adversely affects agriculture by decreasing the production. Global temperatures have already increased by 0.70°C over the past century and prediction of more rise of temperature is there. Possible changes in temperature, precipitation and CO2 concentration are expected to significantly impact crop growth. India could experience a 40% decline in agricultural productivity by the 2080s. Various food grain crops are going to affect badly under the temperature rise situation. It has been projected that under the scenario of a 2.50°C to 4.90°C temperature rise, rice yields will drop by 32% to 40% and wheat yields by 41% to 52%. This paper summarized study related to climate change projections and its impact on production of various crops.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoyan Xu ◽  
Zhongye Sun

The issue of the balance of food supply and demand has always been the main issue of national and even world food security. There are many factors that affect food supply and demand, and the factors are interrelated. Therefore, it is necessary to study this complex issue in a systematic way in order to provide a reliable theoretical basis for the country to formulate effective policy measures. Based on the analysis of the current situation of grain supply and demand, this paper uses system dynamics (SD) to carry out digital elevation model (DEM) and latitude correction for land surface temperature (LST). The LST, combined with the normalized difference vegetation index (NDVI), has initially constructed a temperature vegetation dryness index (TVDI) model; it has constructed five subsystems including arable land, production capacity, import, population, and consumption. This paper proposes a food supply chain network construction model from the dimensions of the food supply chain network’s information flow, logistics, and business flow. Through detailed empirical analysis of each subsystem, we judge the development trend of the total grain system, perform operational tests and historical tests on the simulation results of the model to judge the rationality of the model system structure and simulation prediction, and give the simulation results. Finally, based on the forecast results, targeted countermeasures and suggestions are proposed.


Sign in / Sign up

Export Citation Format

Share Document