3D Model-Based Gaze Tracking Via Iris Features With a Single Camera and a Single Light Source

Author(s):  
Jiahui Liu ◽  
Jiannan Chi ◽  
Wenxue Hu ◽  
Zhiliang Wang
2020 ◽  
Vol 1518 ◽  
pp. 012020
Author(s):  
Shengfu Lu ◽  
Richeng Li ◽  
Jinan Jiao ◽  
Jiaming Kang ◽  
Nana Zhao ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2232
Author(s):  
Antonio Albiol ◽  
Alberto Albiol ◽  
Carlos Sánchez de Merás

Automated fruit inspection using cameras involves the analysis of a collection of views of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is analyzed independently. However, in order to get a global score of the fruit quality, it is necessary to match the defects between adjacent views to prevent counting them more than once and assert that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid size and pose in each view is estimated from the silhouettes of all views. Once the geometric model has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have been estimated, it is possible to use them to propagate defects to neighbor views or to even build a topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the map) instead of a collection of individual views. A large effort was made to make this method as fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU using a single core.


Author(s):  
Qi Cheng ◽  
Shuchun Wang ◽  
Xifeng Fang

The existing process equipment design resource utilization rate in automobile industry is low, so it is urgent to change the design method to improve the design efficiency. This paper proposed a fast design method of process equipment driven by classification retrieval of 3D model-based definition (MBD). Firstly, an information integration 3D model is established to fully express the product information definition and to effectively express the design characteristics of the existing 3D model. Through the classification machine-learning algorithm of 3D MBD model based on Extreme Learning Machine (ELM), the 3D MBD model with similar characteristics to the auto part model to be designed was retrieved from the complex process equipment case database. Secondly, the classification and retrieval of the model are realized, and the process equipment of retrieval association mapping with 3D MBD model is called out. The existing process equipment model is adjusted and modified to complete the rapid design of the process equipment of the product to be designed. Finally, a corresponding process equipment design system was developed and verified through a case study. The application of machine learning to the design of industrial equipment greatly shortens the development cycle of equipment. In the design system, the system learns from engineers, making them understand the design better than engineers. Therefore, it can help any user to quickly design 3D models of complex products.


2007 ◽  
Vol 1 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Q. Chen ◽  
J. Yao ◽  
W.K. Cham

Sign in / Sign up

Export Citation Format

Share Document