A Comparative Study of Sliding-Mode Control Schemes for Quantum Series Resonant Inverters

2009 ◽  
Vol 56 (9) ◽  
pp. 3487-3495 ◽  
Author(s):  
M. Castilla ◽  
L.G. de Vicuna ◽  
J. Matas ◽  
J. Miret ◽  
J.C. Vasquez
2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Guo Haigang ◽  
Li Hongxing ◽  
Zhao Weijing ◽  
Song Zhankui

Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear systems with uncertainties and external disturbances. The proposed control schemes consist of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable universe fuzzy switching control terms (in scheme two), and compensation control terms. The compensation control terms are used to relax the assumption on fuzzy approximation error. Based on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the global asymptotic stability of the closed-loop system can be guaranteed. The major contribution of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode control scheme facing model uncertainties and external disturbances. The derived schemes can effectively solve the chattering problem and the equivalent control calculation in that environment. Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the proposed control schemes.


Author(s):  
Ali Abooee ◽  
Mohammad Hayeri Mehrizi ◽  
Mohammad Mehdi Arefi ◽  
Shen Yin

This paper deals with the finite-time trajectory tracking problem for a typical 3-DOF (degree of freedom) autonomous surface vehicle (ASV) subjected to parametric uncertainties and environmental disturbances. Based on the nonsingular terminal sliding mode control (NTSMC) method, several separate classes of robust control inputs are designed to exactly steer all position states of the 3-DOF AVS to the desired paths during alterable finite times. By exploiting the Lyapunov stability theorem and using mathematical analysis, it is proven that all classes of designed robust control inputs are able to fulfill the mentioned finite-time tracking aim. Moreover, three applicable formulas (represented as several nonlinear inequalities) are extracted to determine the required total finite times for the suggested control schemes. Lastly, all designed control methods are numerically tested onto a benchmark 3-DOF AVS called CyberShip II. Provided computer-based numerical simulations (using MATLAB software) depicted the acceptable performance of the proposed control techniques.


2008 ◽  
Vol 594 ◽  
pp. 401-406 ◽  
Author(s):  
Jin Wei Liang ◽  
Hung Yi Chen ◽  
Shy Yaw Chiang

The fuzzy sliding-mode control strategy is used to tackle tracking problem of a piezo-actuated stage in this paper. The piezo-actuated system is composed of the piezoelectric actuator and a positioning mechanism. Due to hysteretic nonlinearity of the piezoelectric actuator, the tracking accuracy of the system is limited. To compensate for this nonlinearity, a feedback fuzzy sliding-mode control augmented with a predictor-based feedforward compensator is proposed. The controller, denoted as the feedforward-feedback fuzzy sliding-mode controller (FF-FSMC), can be applied to eliminate tracking error caused by the hysteretic characteristics. Experimental results on different types of reference inputs indicate that the proposed control schemes may suppress the tracking error of the piezo-actuated system effectively.


Sign in / Sign up

Export Citation Format

Share Document