Deep Learning of Complex Batch Process Data and Its Application on Quality Prediction

2020 ◽  
Vol 16 (12) ◽  
pp. 7233-7242 ◽  
Author(s):  
Kai Wang ◽  
Ratna Bhushan Gopaluni ◽  
Junghui Chen ◽  
Zhihuan Song
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 512
Author(s):  
Luping Zhao ◽  
Xin Huang

In this paper, focusing on the slow time-varying characteristics, a series of works have been conducted to implement an accurate quality prediction for batch processes. To deal with the time-varying characteristics along the batch direction, sliding windows can be constructed. Then, the start-up process is identified and the whole process is divided into two modes according to the steady-state identification. In the most important mode, the process data matrix, used to establish the regression model of the current batch, is expanded to involve the process data of previous batches, which is called batch augmentation. Thus, the process data of previous batches, which have an important influence on the quality of the current batch, will be identified and form a new batch augmentation matrix for modeling using the partial least squares (PLS) method. Moreover, considering the multiphase characteristic, batch augmentation analysis and modeling is conducted within each phase. Finally, the proposed method is applied to a typical batch process, the injection molding process. The quality prediction results are compared with those of the traditional quality prediction method based on PLS and the ridge regression method under the proposed batch augmentation analysis framework. The conclusion is obtained that the proposed method based on the batch augmentation analysis is superior.


2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


2014 ◽  
Vol 53 (40) ◽  
pp. 15629-15638 ◽  
Author(s):  
Luping Zhao ◽  
Chunhui Zhao ◽  
Furong Gao

Big data is large-scale data collected for knowledge discovery, it has been widely used in various applications. Big data often has image data from the various applications and requires effective technique to process data. In this paper, survey has been done in the big image data researches to analysis the effective performance of the methods. Deep learning techniques provides the effective performance compared to other methods included wavelet based methods. The deep learning techniques has the problem of requiring more computational time, and this can be overcome by lightweight methods.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xianglin Zhu ◽  
Khalil Ur Rehman ◽  
Wang Bo ◽  
Muhammad Shahzad ◽  
Ahmad Hassan

Procedia CIRP ◽  
2020 ◽  
Vol 93 ◽  
pp. 96-101
Author(s):  
Jianjing Zhang ◽  
Peng Wang ◽  
Robert X. Gao

Sign in / Sign up

Export Citation Format

Share Document