A Comprehensive Review of State-of-the-Art Parameter Estimation Techniques for Permanent Magnet Synchronous Motors in Wide Speed Range

2020 ◽  
Vol 16 (7) ◽  
pp. 4747-4758 ◽  
Author(s):  
Muhammad Saad Rafaq ◽  
Jin-Woo Jung
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3549
Author(s):  
Pham Quoc Khanh ◽  
Viet-Anh Truong ◽  
Ho Pham Huy Anh

The paper proposes a new speed control method to improve control quality and expand the Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors (PMSM) speed range enlarging is based on the newly proposed power control principle between two voltage sources instead of winding current control as the conventional Field Oriented Control method. The power management between the inverter and PMSM motor allows the Flux-Weakening obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant power range. Based on motor power control, a new control method is proposed and allows for efficiently reducing current and torque ripple caused by the imbalance between the power supply of the inverter and the power required through the desired stator current. The proposed method permits for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The simulation results have demonstrated the efficiency and stability of the proposed control method.


2019 ◽  
Vol 34 (12) ◽  
pp. 11566-11579 ◽  
Author(s):  
Chen Zhao ◽  
Marko Tanaskovic ◽  
Federico Percacci ◽  
Sebastien Mariethoz ◽  
Patrik Gnos

2020 ◽  
Vol 10 (24) ◽  
pp. 9006
Author(s):  
Yingming Tian ◽  
Yi Chai ◽  
Li Feng

Permanent magnet synchronous motors (PMSM), which are with the advantages of high torque-to-weight ratio and high efficiency, are widely applied in modern industrial systems. However, existing approaches may fail to accurately track the speed trajectory because of the load disturbances. This paper proposes an equivalent and combined control strategy to mitigate the slow time-varying load disturbances and decrease the overshoot for PMSM in full speed range. First, a state observer is proposed to reconstruct the current variables and speed state in the d-q axis. Hence, one can get the speed and position information without the sensors. Then, the disturbance and the load are estimated by the estimating law. Thus, it can reduce the effect of load and disturbances. Further, the PD control is introduced to weaken the overshoot. As a result, the speed trajectory can be more effectively hold both in high speed and low speed. Finally, numerical examples are presented to demonstrate the validity and effectiveness of the proposed estimation scheme and its robustness under different conditions.


Sign in / Sign up

Export Citation Format

Share Document