Multiagent Architecture for Bridge Capacity Measurement System Using Wireless Sensor Network and Weight in Motion

2021 ◽  
Vol 70 ◽  
pp. 1-14
Author(s):  
Seno Adi Putra ◽  
Bambang Riyanto Trilaksono ◽  
Muhammad Riyansyah ◽  
Dina Shona Laila
2021 ◽  
Author(s):  
Rongjin Yang ◽  
Lu Liu ◽  
Qiang Liu ◽  
Xiuhong Li ◽  
Lizeyan Yin ◽  
...  

Abstract Accurate measurement of leaf area index (LAI) is important for agricultural analysis such as the estimation of crop yield, which makes its measurement work important. There are mainly two ways to obtain LAI: ground station measurement and remote sensing satellite monitoring. Recently, reliable progress has been made in long-term automatic LAI observation using wireless sensor network (WSN) technology under certain conditions. We developed and designed an LAI measurement system (LAIS) based on a wireless sensor network to select and improve the appropriate algorithm according to the image collected by the sensor, to get a more realistic leaf area index. The corn LAI was continuously observed from May 30 to July 16, 2015. Research on hardware has been published, this paper focuses on improved system algorithm and data verification. By improving the finite length average algorithm, the data validation results are as follows: 1. The slope of the fitting line between LAIS measurement data and the real value is 0.944, and the root means square error (RMSE) is 0.264 (absolute error ~ 0-0.6), which has high consistency with the real value. 2. The measurement error of LAIS is less than LAI2000, although the result of our measurement method will be higher than the actual value, it is due to the influence of weeds on the ground. 3. LAIS data can be used to support the retrieval of remote sensing products. We find a suitable application situation of our LAIS system data, and get our application value as ground monitoring data by the verification with remote sensing product data, which supports its application and promotion in similar research in the future.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1085 ◽  
Author(s):  
Amir Bashian ◽  
Mohsen Assili ◽  
Amjad Anvari-Moghaddam ◽  
João P. S. Catalão

Real-time monitoring of the power system by phasor measurement units (PMUs) leads to the development of such devices in a wide area measurement system (WAMS). However, the power system observability cannot be obtained by employing only PMUs. The communication infrastructure (CI) is a significant part of the WAMS that has to be optimally designed and implemented to collect data from PMUs and deliver them to control centers. In this paper, a novel hybrid wireless sensor network is proposed for the connection of PMUs throughout the system to enable convenient and low-cost communication media. The problem of observability in the communication system is checked along with the optimal placement of PMUs in the power system to reach full observability. A hybrid wireless sensor network including plug-in powered sensor nodes (PPSNs) and energy harvesting sensor nodes (EHSNs) is utilized for increasing the reliability of the communication system. In the proposed co-optimal PMU-sensor placement problem, the main objective is to minimize the total cost of PMU placement and the related communication system, considering full observability of the power system and CI. To achieve better results, the zero-injection bus (ZIB) effect and system observability redundancy index (SORI) are considered as a constraint in the objective function. A binary-coded genetic algorithm is used for solving the proposed mixed-objective optimization problem subject to different technical operating constraints. The proposed method is examined on IEEE 13-bus and IEEE 37-bus test feeder systems. The results show the applicability and effectiveness of the proposed method compared with the conventional methods in this subject area.


Sign in / Sign up

Export Citation Format

Share Document